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Preface

It is our pleasure to present the proceedings of Discovery Science 2008, the
11th International Conference on Discovery Science held in Budapest, Hungary,
October 13-16, 2008. It was co-located with ALT 2008, the 19th International
Conference on Algorithmic Learning Theory, whose proceedings are available
in the twin volume LNAI 5254. This combination of DS and ALT conferences
has been successfully organized each year since 2002. It provides a forum for
the researchers working on many different aspects of scientific discovery. Indeed,
ALT/DS 2008 covered both the possibility to automate part of the scientific
discovery and the necessary support to the human process of discovery in science.
Interestingly, this co-location also provided the opportunity for an exciting joint
program of tutorials and invited talks. The number of submitted papers was 58,
i.e., slightly more than the previous year. The Program Committee members
were involved in a rigorous selection process based on three reviews per paper.
At the end, we selected 26 long papers thanks to the recommendations of the
experts based on relevance, novelty, significance, technical quality, and clarity.
Although some short papers were submitted, none of them was selected.

We wish to express our gratitude to:

– The authors of the submitted papers
– The Program Committee members and the additional referees for their con-

tribution to the crucial selection process
– The prestigious invited speakers Imre Csiszár, Daniel A. Keim, László Lovász,

Heikki Mannila, and Tom Mitchell
– Sašo Džeroski and João Gama, who accepted to give tutorials
– The members of the Discovery Science Steering Committee and especially

its Chair Einoshin Suzuki
– Akira Ishino, Ayumi Shinohara, Eiji Takimoto, and Thomas Zeugmann for

their support in preparing ALT/DS 2008
– The Local Organization Chair János Csirik (University of Szeged, Hun-

gary) and Gusztáv Hencsey (SCOPE Meetings Ltd., Hungary) for local
arrangements

– Richard van de Stadt (www.borbala.com) for his efficient support in the
management of the whole submission and evaluation process

– Springer for co-operation in publishing the proceedings
– We gratefully acknowledge the financial support of Aegon Hungary, Fraun-

hofer IAIS (Sankt Augustin, Germany), INSA Lyon (France), the University
of Konstanz (Germany), and the University of Szeged (Hungary).

July 2008 Jean-François Boulicaut
Michael R. Berthold

Tamás Horváth
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Mikko Korpela, Harri Mäkinen, Mika Sulkava, Pekka Nöjd, and
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On Iterative Algorithms with an Information

Geometry Background

Imre Csiszár

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
csiszar@renyi.hu

Abstract. Several extremum problems in Statistics and Artificial In-
telligence, e.g., likelihood maximization, are often solved by iterative
algorithms such as iterative scaling or the EM algorithm, admitting an
intuitive “geometric” interpretatation as iterated projections in the sense
of Kullback information divergence. Such iterative algorithms, includ-
ing those using Bregman rather than Kullback divergences, will be sur-
veyed. It will be hinted to that the celebrated belief propagation (or
sum-product) algorithm may also admit a similar interpretation.

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Visual Analytics: Combining Automated

Discovery with Interactive Visualizations

Daniel A. Keim, Florian Mansmann, Daniela Oelke, and Hartmut Ziegler

University of Konstanz, Germany
first.lastname@uni-konstanz.de
http://infovis.uni-konstanz.de

Abstract. In numerous application areas fast growing data sets develop
with ever higher complexity and dynamics. A central challenge is to fil-
ter the substantial information and to communicate it to humans in an
appropriate way. Approaches, which work either on a purely analytical
or on a purely visual level, do not sufficiently help due to the dynamics
and complexity of the underlying processes or due to a situation with
intelligent opponents. Only a combination of data analysis and visualiza-
tion techniques make an effective access to the otherwise unmanageably
complex data sets possible.

Visual analysis techniques extend the perceptual and cognitive abili-
ties of humans with automatic data analysis techniques, and help to gain
insights for optimizing and steering complicated processes. In the paper,
we introduce the basic idea of Visual Analytics, explain how automated
discovery and visual analysis methods can be combined, discuss the main
challenges of Visual Analytics, and show that combining automatic and
visual analysis is the only chance to capture the complex, changing char-
acteristics of the data. To further explain the Visual Analytics process,
we provide examples from the area of document analysis.

1 Introduction

The information overload is a well-known phenomenon of the information age,
since our ability to collect and store data is increasing at a faster rate than our
ability to analyze it. In numerous application areas fast growing data sets de-
velop with ever higher complexity and dynamics. The analysis of these massive
volumes of data is crucial in many application domains. For decision makers it
is an essential task to rapidly extract relevant information from the immense
volumes of data. Software tools help analysts to organize their information, gen-
erate overviews and explore the information in order to extract potentially useful
information. Most of these data analysis systems still rely on visualization and
interaction metaphors which have been developed more than a decade ago and it
is questionable whether they are able to meet the demands of the ever-increasing
masses of information. In fact, huge investments in time and money are often lost,
because we lack the possibilities to make proper use of the available data. The
basic idea of Visual Analytics is to visually represent the information, allowing

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 2–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the human to directly interact with the data to gain insight, draw conclusions,
and ultimately make better decisions. The visual representation of the informa-
tion reduces complex cognitive work needed to perform certain tasks. “People
use visual analytics tools and techniques to synthesize information and derive in-
sight from massive, dynamic, ambiguous, and often conflicting data ... to provide
timely, defensible, and understandable assessments” [1].

The goal of Visual Analytics research is to turn the information overload into
an opportunity. Decision-makers should be enabled to examine this massive in-
formation stream to take effective actions in real-time situations. For informed
decisions, it is indispensable to include humans in the data analysis process and
combine their flexibility, creativity, and background knowledge with the enormous
storage capacity and the computational power of today’s computers. The specific
advantage of Visual Analytics is that decision makersmay focus their full cognitive
and perceptual attention on the decision, while allowing them to apply advanced
computational methods to make the discovery process more effective.

The rest of this paper is structured as follows: Section 2 defines Visual Analyt-
ics, discusses related research areas, and presents a model of the Visual Analytics
Process. In Section 3, we discuss the major technical challenges of the field. To
foster a deeper understanding of Visual Analytics, Section 4 details examples
of how visual and automatic methods can be used for an advanced interactive
document analysis. Finally, Section 5 summarizes the key aspects of our paper.

2 Visual Analytics

In this section we will discuss Visual Analytics by defining it, by listing related
research areas, and by presenting a model of the Visual Analytics Process.

2.1 Definition

According to [1], Visual Analytics is the science of analytical reasoning supported
by interactive visual interfaces. Today, data is produced at an incredible rate and
the ability to collect and store the data is increasing at a faster rate than the
ability to analyze it. Over the last decades, a large number of automatic data
analysis methods have been developed. However, the complex nature of many
problems makes it indispensable to include human intelligence at an early stage
in the data analysis process. Visual Analytics methods allow decision makers to
combine their human flexibility, creativity, and background knowledge with the
enormous storage and processing capacities of today’s computers to gain insight
into complex problems. Using advanced visual interfaces, humans may directly
interact with the data analysis capabilities of today’s computer, allowing them
to make well-informed decisions in complex situations.

2.2 Related Research Areas

Visual Analytics can be seen as an integral approach combining visualization,
human factors, and data analysis. Figure 1 illustrates the research areas related
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to Visual Analytics. Besides visualization and data analysis, especially human
factors, including the areas of cognition and perception, play an important role
in the communication between the human and the computer, as well as in the
decision-making process. With respect to visualization, Visual Analytics relates
to the areas of Information Visualization and Computer Graphics, and with
respect to data analysis, it profits from methodologies developed in the fields of
information retrieval, data management & knowledge representation as well as
data mining.

2.3 The Visual Analytics Process

The Visual Analytics Process combines automatic and visual analysis methods
with a tight coupling through human interaction in order to gain knowledge from
data. Figure 2 shows an abstract overview of the different stages (represented
through ovals) and their transitions (arrows) in the Visual Analytics Process.

In many application scenarios, heterogeneous data sources need to be inte-
grated before visual or automatic analysis methods can be applied. Therefore,
the first step is often to preprocess and transform the data to derive different rep-
resentations for further exploration (as indicated by the Transformation arrow
in Figure 2). Other typical preprocessing tasks include data cleaning, normal-
ization, grouping, or integration of heterogeneous data sources.

After the transformation, the analyst may choose between applying visual or
automatic analysis methods. If an automated analysis is used first, data mining
methods are applied to generate models of the original data. Once a model is
created the analyst has to evaluate and refine the models, which can best be
done by interacting with the data. Visualizations allow the analysts to interact

Fig. 1. Research Areas Related to Visual Analytics
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Feedback loop

KnowledgeData

Visual Data Exploration

Visualization

Models

Automated Data Analysis

Parameter

refinement

Data

Mining

Transformation
Mapping

User Interaction

Model

Visualization
Model

Building

Fig. 2. The Visual Analytics Process is characterized through interaction between data,
visualizations, models about the data, and the users in order to discover knowledge

with the automatic methods by modifying parameters or selecting other analysis
algorithms. Model visualization can then be used to evaluate the findings of the
generated models. Alternating between visual and automatic methods is char-
acteristic for the Visual Analytics process and leads to a continuous refinement
and verification of preliminary results. Misleading results in an intermediate
step can thus be discovered at an early stage, leading to better results and a
higher confidence. If a visual data exploration is performed first, the user has
to confirm the generated hypotheses by an automated analysis. User interaction
with the visualization is needed to reveal insightful information, for instance by
zooming in on different data areas or by considering different visual views on
the data. Findings in the visualizations can be used to steer model building in
the automatic analysis. In summary, in the Visual Analytics Process knowledge
can be gained from visualization, automatic analysis, as well as the preceding
interactions between visualizations, models, and the human analysts.

The Visual Analytics Process aims at tightly coupling automated analysis
methods and interactive visual representations. The classic way of visually ex-
ploring data as defined by the Information Seeking Mantra (“Overview first,
Zoom/Filter, Details on demand”) [2] therefore needs to be extended to the
Visual Analytics Mantra [3]:

“Analyze First -
Show the Important -

Zoom, Filter, and Analyze Further -
Details on Demand”

With massive data sets at hand all three steps of the Information Seeking
Mantra are difficult to implement. An overview visualization without losing in-
teresting patterns is difficult to create, since the amount of pixels of the display
does not keep pace with the increasing flood of data. In Visual Analytics, it
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is therefore not sufficient to just retrieve and display the data using a visual
metaphor; it is rather necessary to analyze the data according to its value of in-
terest, show the most relevant aspects of the data, and at the same time provide
interaction models, which allow the user to get details of the data on demand.

3 Challenges of Visual Discovery

With information technology becoming a standard in most areas in the past years,
more and more digital information is generated and collected. As the amount of
data is continuously growing and the amount of pixels on the display remains
rather constant, the huge amount of data to be visualized exceeds the limited
amount of pixels of a display by several orders of magnitude. One key challenge
of Visual Analytics is therefore scalability as it determines the ability to process
large datasets in terms of computational overhead. In particular, since we are deal-
ing with visualization techniques, the visual scalability of the techniques has to be
considered, which is defined as the capability of visualization tools to effectively
display large data sets in terms of either the number or the dimension of individ-
ual data elements [4]. While relying on increased hardware performance to cope
with larger and larger problems, researchers need to design more effective Visual
Analytics algorithms to bring this data onto the screen in an appropriate way.

Tremendous streams of time related or real time data are generated by dy-
namic processes, arising in business, networks, or telecommunications. Examples
are sensor logs, web statistics, network traffic logs, or atmospheric and meteoro-
logical records. Analyzing these data streams is an important challenge, since the
sheer amount of data does often not allow to record all data at full detail. This
results in the need for effective compression and feature extraction to manage
and access the data. Furthermore, real-time requirements put an additional bur-
den upon the application developers. To enable quick identification of important
information and timely reaction to critical process states or alarming incidents,
analysis techniques and metaphors need to be developed, which render the user
capable of analyzing real time data streams by presenting the results instantly
in a meaningful and intuitive way.

To be capable of accessing information from a number of different sources,
real-world applications require scalable methods for the synthesis of heteroge-
neous types of data. The heterogeneous data sources may include collections
of vector data, strings, text documents, graphs, or multimedia objects. Inte-
grating these data sources touches a number of fundamental problems in de-
cision theory, information theory, statistics, and machine learning, evidently
posing a challenge for Visual Analytics, too. The focus on scalable and ro-
bust methods for fusing complex heterogeneous data sources is thus key to a
more effective analysis process. Computational biology is one such application
domain where the human genome, for example, is accompanied by real-valued
gene expression data, functional annotation of genes, genotyping information,
a graph of interacting proteins, equations describing the dynamics of a system,
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localization of proteins in a cell, and natural language documents in the form of
papers describing experiments or partial models.

Visual Analytics can also help to close the Semantic Gap. Since humans
are the ultimate instance for defining semantics, Visual Analytics may signif-
icantly improve the way semantic definitions are obtained and refined. In partic-
ular, methods from semantics research may capture associations and complex
relationships within the data sets to support decision-centered visualization.
While ontology-driven techniques and systems have already started to enable
new semantic applications in a wide span of areas, further research is nec-
essary to increase our capabilities for creating and maintaining large domain
ontologies and automatic extraction of semantic meta data, since the integra-
tion of different ontologies to link various datasets is hardly automated yet.
Research challenges arise from the size of ontologies, content heterogeneity, and
link analysis over ontology instances or meta data. New Visual Analytics meth-
ods to resolve semantic heterogeneity and discover complex relationships are
thus needed.

Finally, evaluation as a systematic determination of merit, worth, and signif-
icance of a technique or system is essential to the success of Visual Analytics.
Different aspects need to be considered when evaluating a system, such as func-
tional testing, performance benchmarks, measurement of the effectiveness of the
display, economic success, user studies, assessment of its impact on decision-
making, etc. Note that not all of these aspects are orthogonal nor can they
always be applied. Since Visual Analytics deals with unprecedented data sizes,
many developed applications contain novel features to support a previously un-
solvable analysis task. In such a case, the lack of a competing system turns a
meaningful evaluation into a challenge in itself.

4 Example Application: Visual Document Analysis

Document Analysis is an area in which the need for visual analysis techniques
is quite obvious. Large amounts of information are only available in textual
form (e.g. books, newspapers, patents, service reports, etc.). But often these
valuable resources are not used, because reading and analyzing the documents
would take too much effort. Take for example a company’s need to know the
public opinion about one of its products and especially about rumors regarding
that product. Knowing about such rumors is important to be able to quickly
react to undesired developments and to effectively influence the public opinion
in a favorable way. The Internet is a great place for understanding the public
opinion since nowadays a significant percentage of the population participates in
writing blogs, commenting on products at merchant sites, stating their opinions
in forums, etc. And people read other people’s comments to get information
and form their opinion. With current search engines, however, it is not easy to
find the relevant information related to the public opinion about a company’s
product, since search engines usually return millions of hits with only a small
percentage being relevant to the task.
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The example shows that it is impossible for a human to find and analyze all
the relevant documents. On the other hand, an automatic semantic analysis of
the documents is still infeasible today due to a) the impressive flexibility and
complexity of natural language as well as b) the need to semantically interpret
the content. The challenge that researchers try to tackle with Visual Analysis
techniques is how to allow the human and computer to effectively work together
to bridge the Semantic Gap.

Text can be analyzed on different abstraction levels:

• statistical level (e.g. frequencies of (specific) words, average sentence length,
number of tokens or types, etc.)

• structural level (structural components of a document, such as header, footer,
title, abstract, etc.)

• syntactical level (principles and rules for constructing sentences)
• semantic level (linguistic meaning)
• pragmatic level (meaning in context; consequence for actions)

The higher the abstraction level the more difficult it is for the computer to
appropriately analyze a text. Counting words and characters as done at the sta-
tistical level is a simple task which can easily be performed by the computer.
The identification of the structure of a document and the analysis of the syntax
is already more challenging but can still be computationally approached (see
e.g. the techniques presented in [5] [6]). Analyses on the semantic and pragmatic
level are much more challenging. The idea of Visual Analytics is to let the human
and the computer cooperate in solving the task. Humans contribute background
knowledge, interpretation, and semantic analysis of the text whereas the com-
puter supports the human analysts in the best possible way to enable them to
deal with large data sets, e.g. by performing the time-consuming preprocessing
and filtering steps.

4.1 Quasi-semantic Document Properties

The vision for automatic document analysis is to teach the computer to under-
stand a document in a way similar to humans including its semantic and prag-
matic aspects. Since this goal seems to be too ambitious at the current state of
research, we start by teaching the computer to analyze a document with respect
to one semantic aspect at a time. This task is relevant in many real application
scenarios. Often large amounts of documents have to be analyzed with respect
to a certain analysis question. Examples for such document analysis questions
include:

• What is the public opinion regarding a product / a politician / a “hot” news
topic, etc. that is expressed in news articles, blogs, discussion groups, etc.
on the Internet?

• How trustworthy are the statements?
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• How much emotion content is contained in the documents (e.g. hate in ter-
rorist webpages)?

We call the document property that is central to the considered document
analysis question a quasi-semantic property. We define quasi-semantic properties
as higher-level document properties that capture one semantic aspect of a docu-
ment (e.g. positive / negative statements with respect to a given product name).
Most quasi-semantic properties cannot be measured directly. Nevertheless, com-
binations of low-level features (i.e. statistical, structural and syntactical features)
can be used to approximate quasi-semantic properties of the documents, which
help to bridge the semantic gap. The challenge is how to determine the best
combination of low-level features to approximate such higher-level document
properties.

4.2 Opinion Analysis

Figure 3 shows a set of documents that have been analyzed with respect to
a quasi-semantic property that tries to assess the positive or negative opinion
expressed in the documents. To automatically assess the polarity of a sentence
we counted the number of opinion signal words. The signal words were given
in form of two lists that contain adjectives, verbs and nouns (such as “bad”,
“problem”, “wonderful”, etc.) that hint at a subjective statement and its polar-
ity. The algorithm can easily be improved by taking context dependent signal
words or negation into account (cf. [7] and [8]). For illustrative purposes, we use
the title pages of the November 2007 issues of The Telegraph as text corpus.
The figure shows that there are some articles that are completely negative (e.g.
the article in the lower right corner) and others that are mostly positive (such
as the articles about the Queen in the 1st column, 3rd row). Interestingly, there
are also articles with quite mixed opinions or with a sudden change in polarity
(for example, the first article in the last column, 1st row or the lower left article
in the 4th column, 1st row). The example demonstrates that by combining au-
tomatic and visual methods it becomes possible to quickly analyze a document
corpus with respect to a quasi-semantic property without reading it.

4.3 Authorship Attribution

Our second case study shows how Visual Analytics techniques can be used to
analyze the discrimination power of low-level features that are commonly used
in authorship attribution. Given some documents with known authorship the
task of authorship attribution is to assign a document with unknown authorship
to the author that has written it. Thus, in this case the quasi-semantic property
that we would like to measure is the writing style of an author.

In previous work we focused on the development of techniques that support
the analysis of low-level features and thus can be used to find (combinations of)
low-level features that are able to approximate a desired quasi-semantic prop-
erty. In fully automatic document analysis often just a single feature value is
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Fig. 3. Title pages of The Telegraph in November 2007. The text has been analyzed
with respect to a quasi-semantic property ‘that tries to assess the positive or negative
opinion expressed in the documents. Sentences with positive statements are highlighted
in green, the ones with negative statements in red, respectively. The degree of positive-
ness or negativeness is denoted by the intensity of the color. (courtesy of The Telegraph)

calculated per document. With the use of visualization techniques, it is possible
to extract a sequence of feature values and present it to the user as a character-
istic fingerprint for each document. By doing this it is possible to analyze the
development of the values across the document in detail. Figure 4 shows our
Literature Fingerprinting technique which was first presented in [9]. In Figure 4,
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(a) Average sentence length (b) Simpson’s Index

(c) Function words (First Dimen-
sion after PCA)

(d) Function words (Second Dimen-
sion after PCA)

(e) Hapax Legomena (f) Hapax Dislegomena

Fig. 4. Literature Fingerprinting Technique (see [9]). Instead of calculating a single fea-
ture value per document, a sequence of feature values is extracted and presented to the
user as a characteristic fingerprint for each document. In the example above, the tech-
nique is used to analyze the discrimination power of text features for authorship attri-
bution. Each pixel represents the feature value for one text block and the grouped pixels
belong to one book. The different feature values are mapped to color. If a feature is able
to discriminate between the two authors, the books in the first row (that have been writ-
ten by J. London) are visually different from the remaining books (written by M. Twain).
Each subfigure shows the visualization of the values of one specific low-level feature that
is commonly used for authorship attribution. It can easily be seen that not all features
are able to discriminate between the two authors. Furthermore, it is interesting to ob-
serve that the book Huckleberry Finn (middle book in the middle column of the books
of M. Twain) sticks out in a number of features as if it was not written by Mark Twain.
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the technique is applied to several books of Jack London (first row of each subfig-
ure) and Mark Twain (last three rows of each subfigure). Each pixel represents a
text block of 10,000 words and the pixels are arranged from left to right and top
to bottom as they appear in the sequence of the book. Neighboring blocks have
an overlap of 9,000 words to obtain a continuous and split-point independent
representation. Color is mapped to the feature value, ranging from blue for high
feature values to red for low feature values. In this example the values of five
different features have been calculated:

• the average sentence length
• the frequencies of specific function words; the resulting high-dimensional

feature vectors are projected into low-dimensional space using a Principal
Component Analysis and the first and second dimension are visualized in
Figures 4(c) and 4(d).

• three vocabulary measures, namely Hapax Legomena Index, Hapax Disle-
gomena Index and Simpson’s Index which are calculated as follows:
Hapax Legomena Index (R):

R =
100 logN

1 − V1/V

Hapax Dislegomena Index (D):

D =
V2

V

Simpson’s Index (S):

S =
∑∞

r=1 r(r − 1)Vr

N(N − 1)
where N = the number of tokens V = the number of types Vr = the number
of lexical units that occur exactly r times

Please refer to [10] for an overview of the different features that are used for
authorship attribution.

Each subfigure shows visualizations of all documents for one specific low-level
feature. If the feature is able to discriminate between the two authors, the books
in the first row (books by Jack London) have to be different from the ones in
the last three rows (books by Mark Twain). It can easily be seen that there are
some low-level features for which this is largely true, e.g. average sentence length
in Figure 4(a) but also Simpson’s Index in Figure 4(b). Others do not seem to
have any discrimination power with respect to the two authors at all (e.g. Hapax
Dislegomena which is depicted in Figure 4(f)). Interestingly, there is one book
of Mark Twain that sticks out in many visualization, namely The Adventures of
Huckleberry Finn (middle book in the middle row of the books by Mark Twain).
The writing style of this book seems to be totally different from all the other
books of Mark Twain.

This case study shows a small example of how Visual Analytics may help
in better solving complex analysis tasks. The visual analysis enables the ana-
lyst to detect problems with the low-level feature used and adapt the similarity
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measures to make the authorship attribution more effective. While the example
clearly shows the advantage of Visual Analytics it is only a first step toward a
Visual Document Analysis system which tightly integrates automated document
analysis and interactive document exploration capabilities.

5 Conclusions

Since data volumes are increasing at a faster pace than our ability to analyze
them, there is a pressing need for automatic analysis methods. However, most
automatic analysis methods require a well-defined problem and often return large
and complex models. Visual Analytics turns the information overload problem
into an opportunity by integrating interactive data exploration with advanced
knowledge discovery algorithms.

In this paper, we motivate and define Visual Analytics, present a model of the
Visual Analytics Process for a deeper understanding of how methods from visual
data exploration and information mining can be combined to gain insights into
large and complex datasets. The paper sketches the main challenges of Visual
Analytics and describes why these challenges are difficult to solve. In particular,
we give a demonstrative example of how Visual Analytics methods can help
to gain insights in document analysis with an application to the authorship
attribution problem.
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Abstract. Graph property testing is the third reincarnation of the same
general question, after statistics and learning theory. In its simplest form,
we have a huge graph (we don’t even know its size), and we draw a sample
of the node set of bounded size. What properties of the graph can be
deduced from this sample?

The graph property testing model was first introduced by Goldreich,
Goldwasser and Ron (but related questions were considered before). In
the context of dense graphs, a very general result is due to Alon and
Shapira, who proved that every hereditary graph property is testable.

Using the theory of graph limits, Lovász and Szegedy defined an an-
alytic version of the (dense) graph property testing problem, which can
be formulated as studying an unknown 2-variable symmetric function
through sampling from its domain and studying the random graph ob-
tained when using the function values as edge probabilities. This analytic
version allows for simpler formulation of the problems, and leads to vari-
ous characterizations of testable properties. These results can be applied
to the original graph-theoretic property testing. In particular, they lead
to a new combinatorial characterization of testable graph properties.

We survey these results, along with analogous results for graphs with
bounded degree.
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Abstract. Ordering and ranking items of different types (observations,
web pages, etc.) are important tasks in various applications, such as
query processing and scientific data mining. We consider different prob-
lems of inferring total or partial orders from data, with special emphasis
on applications to the seriation problem in paleontology. Seriation can be
viewed as the task of ordering rows of a 0-1 matrix so that certain condi-
tions hold. We review different approaches to this task, including spectral
ordering methods, techniques for finding partial orders, and probabilistic
models using MCMC methods.

Joint work with Antti Ukkonen, Aris Gionis, Mikael Fortelius, Kai
Puolamäki, and Jukka Jernvall.

1 Introduction

Ordering and ranking items of some type (observations, web pages, etc.) is one
of the basic tasks in computing. In the traditional case of sorting items on the
basis of a key field the result is a total order. More recent applications such as
ranking of database query results [1,2,3,4,5,6,7] and web ranking [8,9,10,11,12]
concentrate on finding a subset of relevant items and an ordering for those.
Ordering tasks occur also in machine learning [13,14,15,16].

Here we look at cases where the ordering task is more hard to define. For
simplicity we consider 0-1 matrices. Given a 0-1 matrix M with n rows and
m columns, what is a good ordering of the rows? Without any background
information there is no way of preferring one order of the rows to others. However,
if there is some knowledge about the process that produces the data, we can state
that one order is more likely than another.

Our motivating application comes from paleontology, where the 0-1 matrix
has as rows fossil sites and as columns taxa (typically species or genera). Each
site represents a collection of taxa that lived in the same area at approximately
the same time. The seriation task is to order the rows of this matrix into an
order that reflects the age of the fossil sites. The background information that
can be used in this task is that the occurrences of a taxon should be more or
less consecutive.

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 16–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The study of paleontological seriation leads to interesting theoretical and prac-
tical problems. In this paper we review some of the work on finding good total
or partial orders [17,18,19,20,21,22] that stems from the paleontological applica-
tions. While the description is mostly in terms of the application, most of the
methods are quite general.

The work has been done with Antti Ukkonen, Aris Gionis, Mikael Fortelius,
Kai Puolamäki and Jukka Jernvall.

2 Seriation Problem in Paleontology

A fossil site can be defined as a collection of fossil remains collected from some
location, typically in a sedimentary deposit. A site represents a subset of the taxa
(typically species or genera) that lived at a certain location at approximately
the same time. Sites and their taxa are naturally represented by an occurrence
matrix, i.e., a 0-1 matrix M , where the rows correspond to sites and the columns
correspond to taxa. The entry M(i, j) indicates that taxon j has been found at
site i.

Seriation is the task of temporal ordering of fossil sites, and it is a fundamen-
tal problem in paleontology. Conventional paleontological seriation (biostratig-
raphy) is based on the use of stratigraphic superposition information, which
typically is not available in large datasets compiled from a wide variety of sources.
(See [18] and references therein.) Radioisotope and other methods can be used
to obtain fairly accurate ages for sites, but typically these methods can only be
used for a subset of the localities.

Starting from a 0-1 matrix M , what is the background information that can
be used to select an ordering π for the rows of M? A very simple form of such
information is that the occurrences (the 1s) of a taxon do not occur randomly
in the column. Rather, first a taxon does not exist, then it becomes extant, and
then becomes extinct (dies out). That is, in a good ordering of the rows the ones
for each taxon should be consecutive. As an example, consider the two orderings
of the rows of the same matrix:

0 0 1 0 0 1
1 1 0 0 1 1
0 1 1 1 1 1
0 1 0 1 1 0
1 1 1 0 1 0

On the left, the first and third taxon show a pattern 1 · · · 0 · · · 1 of presences
and absences: there is a 0 between two 1s. Such 0s are known as Lazarus
events. The left matrix has four Lazarus events, but on the right there are
none.

Given an ordering π = (v1, v2, . . . , vn) of the rows of M , we refer by via to
the value in column a of row vi. The Lazarus count L(M, π) of M with respect
to π is
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L(M, π) =
∣∣{ (i, a) | via = 0

∧∃j : vja = 1 ∧ j < i

∧∃k : vka = 1 ∧ i < k}
∣∣.

That is, L(M, π) is the number of zeros in the data that are between the first
and last ones in their column.

Finding if there is an ordering π such that L(M, π) = 0 is the problem of
determining whether a 0-1 matrix has the consecutive ones property, i.e., whether
there is an ordering such that all 1s are consecutive in all columns. This property
can be tested in linear time [23,24].

However, in real data there is a lot of noise: false positives (false ones) and
false negatives (false zeros). Especially false zeros (cases where a taxon is not
observed when it was actually present) are abundant: their number can be about
as high as the number of true ones. That is, L(M, π) > 0 for all total orders π. A
number of methods (see, e.g., [25,26,20]) have been proposed for finding a good
ordering.

If fossil data is available from different layers in the same geographic location,
i.e., we can have stratigraphic information indicating that certain sites must be
in a specific order. Furthermore, when geochronologic data about the ages of the
fossils is available, it also generates an ordering for a subset of the sites.

3 General Formulation

The problem of finding a good ordering of rows of paleontological data matrices
can be viewed as an instance of a more general problem. Namely, given a taxon
a and three rows u, v, and w such that M(u, a) = M(w, a) = 1 but M(v, a) = 0,
we know that the ordering in which u < v < w or u > v > w will generate a
Lazarus event in the data. Thus all such triples can be viewed as constraints that
the ordering should aim to avoid. Stratigraphic information and geochronologic
ages of the sites, on the other hand, give constraints that should be satisfied:
certain sites should be in a given order.

Given a set U of items to be ordered, a constraint α consists of a sequence
of elements from U , i.e., α = (u1, u2, . . . , uk) for some k > 1, where the ui’s are
distinct elements from U .

An ordering π of the elements of U agrees with α, if π orders the elements in
C in the order given by π. Given a set C of constraints, denote by Γ (π, C) the
set of constraints from C that agree with π.

Given two sets of constraints P (positive constraints) and N (negative con-
straints), the constrained ordering problem is to find an ordering π of the el-
ements of U that agrees with as many positive constraints and with as few
negative constraints as possible. For example, we could search for the ordering
π minimizing

|P \ Γ (π, P )|+ |Γ (π, N)|,

or some other function of the sets Γ (π, P ) and Γ (π, N).
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In the paleontological case the positive constraints are typically hard con-
straints: we would like all of them to be satisfied. Thus, the goal in that appli-
cation would be to obtain an ordering π such that Γ (π, P ) = P and Γ (π, N) is
as small as possible.

As another example, in the feedback arc set problem the input is a tournament
on a set of edges, i.e., a directed graph G = (V, E) where for each u, v ∈ V either
(u, v) ∈ E or (v, u) ∈ E, and the task is to find an ordering π = (u1, . . . , un) of
V such that the number of pairs (i, j) with i < j and (uj , ui) ∈ E is minimized.
Thus the feedback arc set problem is an instance of the constrained ordering
problem with only positive constraints and with the goal of minimizing the size
of P \ Γ (π, P ).

4 Spectral Approaches

Spectral methods are based on computing eigenvalues and eigenvectors of certain
matrices, and then using these for various data analysis tasks; these approaches
have turned out to be very efficient for many problems (see, e.g., [27,28]).

A simple way of using spectral methods for ordering items is as follows. Given
a similarity matrix S between sites. Consider the Laplacian matrix H , with
entries H(i, j) = −S(i, j) for i �= j and H(i, i) =

∑
j;j �=i S(i, j). Then H is a

symmetric matrix and its rows sum to 0; thus the smallest eigenvalue is 0. The
eigenvector x of corresponding to second smallest eigenvalue of H is the vector
minimizing ∑

i,j

S(i, j)(xi − xj)2

subject to
∑

i xi = 0 and
∑

i x2
i = 1. See [29,26] for more details. That is,

the vector v is a way of embedding the entries into one dimension in a way that
minimizes the stress (xi−xj)2 weighted by the similarity matrix S. For seriation,
a simple way of using a spectral approach is to use as the similarity matrix S
the product MMT or some scaled version of it.

According to Hill [30], the history of spectral methods for discrete data and
ordering goes back to at least to the work of Hirschfeld and Fisher in the 1930s,
under the name correspondence analysis. See also [31] for some early use of the
method.

Such a spectral method works quite well for paleontological applications and
other seriation tasks [20,31]. In [20] we studied the behavior of the simple spectral
method for seriation of Neogene mammal fossil sites. In this database [32] the
true geochronologic ages of some of the sites are known from radiometric mea-
surements. For such sites the correlation between the true age and the coefficient
of the eigenvector is 0.97 – 0.99, indicating a very high degree of agreement. The
correlation between the eigenvector and the age estimated by using traditional
methods (so-called MN classification) is 0.94 – 0.97. Note that the MN classi-
fication uses all available information, while the spectral method only uses the
matrix of presences and absences. In terms of the number of Lazarus events,
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it seems quite difficult to improve in any significant way from the spectral re-
sults; for example, local search approaches did not yield any clear improvements
compared to the spectral results.

A small drawback in the method is that if the similarity matrix has several
disconnected components (e.g., if there are sites that contain only taxa not seen
elsewhere), the eigenvector will assign most of the weight to the sites in one of
the components and thus the method will not work. Therefore in practice one
has to augment the method with additional steps that handle such degenerate
cases. Also, the method cannot find the arrow of time: if x is a solution for the
above task, also −x is.

An interesting question is the following: why does the spectral method work
well in the seriation task? After all, the function that the seriation method
minimizes is not directly connected to the number of Lazarus events in the
matrix.

Atkins et al. [26] show that the spectral approach does find the optimum in
the case when there is an ordering with the consecutive ones property. What
happens in the case when there is an ordering that almost has this property?
Could one prove that the spectral method does indeed find the ordering?

Question 1. Why does the spectral method work well in the seriation task? Is
there a way of improving its performance?

The spectral method, as described above, is not able to handle positive con-
straints, such as stratigraphic information. In practice this would be an impor-
tant requirement.

Question 2. Is there a way of extending the spectral method so that also positive
constraints can be taken into account?

Such an extension might already exist in the optimization literature. Given
a constraint such as that sites i′, j′, and k′ have to be in this order, what we
would like to do is minimize ∑

i,j

S(i, j)(xi − xj)2

subject to ∑
i

xi = 0 and
∑

i

x2
i = 1 and xi′ < xj′ < xk′ .

5 Finding Partial Orders

In the preceding section we considered the problem of finding a single total
order that minimizes a certain function. However, it can be the case that there
are several orderings that are equally good with respect to, say, the Lazarus
count. The available data may be insufficient to yield a precise order on the
rows. As an example, consider the matrix below on the left, having one Lazarus
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event. No permutation would yield a completely error-free ordering; thus this
matrix does not have the consecutive ones property. But there are two other
permutations of the three middle rows that result in one Lazarus event as well:

1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 0 1
1 0 1 and 0 1 1 and 1 1 0
0 1 1 1 0 1 0 1 1
0 0 1 0 0 1 0 0 1

Every other permutation has a higher Lazarus count. Consider the indices
(1 2 3 4 5) of the rows of the matrix on the left. Then the second one is given by
(1 2 4 3 5) and the third one by (1 3 2 4 5). Forcing a total order on the rows
of the above matrix by minimizing the Lazarus count is thus bound to contain
some randomness, since all three orders are in fact equally good. For example,
spectral ordering gives (1 2 3 4 5) as a solution. There is no reason to prefer this
over the two others if the only criterion is number of Lazarus events.

Thus it makes sense to search for partial orders instead of total orders [33].
Consider a partial order � among the row indices a 0-1 matrix M . The number
of Lazarus events in M with respect to � can be defined in exactly the same
way as for the case of a total order: how many 0s there are in the data which
are between two 1s in (this time) the partial order:

L(M, �) =
∣∣{ (i, a) | via = 0

∧∃j : vja = 1 ∧ j � i

∧∃k : vka = 1 ∧ i � k}
∣∣.

Of course, a trivial way of minimizing this quantity is to take � to be the
trivial partial order, where v � w holds only if v = w. Then there are no Lazarus
events, but the resulting partial order is not informative.

Thus, a possible problem definition would be to search for a partial order �
minimizing the quantity

L(M, �) + α(�)

where α(�) is some function of � that is small for total orders and becomes
larger as � approaches the trivial partial order. (The approach used in [33] was
not based on an explicit function α; the algorithm described there is a heuristic
local search method.)

There are different possible choices for the function α. Perhaps the most natu-
ral one would be to use as α(�) the logarithm of the number of linear extensions
of �, indicating how many bits in addition to � we need to transmit to give
a total order. Computing the number of linear extensions is �P-complete, and
hence using this definition is not without problems. Simpler alternatives would
be, say, the size of �, which for n rows varies between n for the trivial partial
order and n(n + 1)/2 for a total order.

Arbitrary partial orders are complex objects. Our experience in [33] was that
the resulting partial orders were considered highly interesting by the paleontolo-
gists, but robustness of the results was sometimes a problem. Likewise, searching
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over arbitrary partial orders seems a hard task. Thus it probably makes sense
to look for subclasses of partial orders with more tractable properties.

Question 3. What are good subclasses of partial orders for the seriation prob-
lem? The partial orders in the subclass should be easy to understand, sufficiently
versatile to model the natural situations, and their algorithmic properties should
be simple.

An interesting subclass is formed by bucket orders, considered in the next
section.

6 Finding Bucket Orders

A simple class of partial orders is the class of series-parallel partial orders; the
problem of finding them was considered in [34]. An even simpler class is the set
of bucket orders, i.e., total orders with ties. That is, a bucket order <B on a
set U of items is an ordered partition U1, U2, . . . , Uk of U ; for u, v ∈ U we have
u <B v if and only if u ∈ Ui and v ∈ Uj with i < j (see, e.g., [35,3]). A bucket
order is a series-parallel partial order, and the number of linear extensions of a
bucket order is easy to compute.

In [19] we studied the problem of finding bucket orders. As input we used a
pair order matrix for the items to be ordered, i.e., a nonnegative matrix T with
entry T (u, v) indicating how likely row u is to precede row v. We assume that
T (u, v) + T (v, u) = 1 for all items u and v.

Note that a bucket order <B also immediately defines a pair order matrix TB

by TB(u, v) = 0.5 if u and v are in the same bucket, and otherwise TB(u, v) = 1
or 0.

Given a pair order matrix T , the task is to find a bucket order that best
describes it. This task is an instance of the general framework above, with the
modification that the constraints have weights.

Based on the insightful pivot algorithm of Ailon et al. [36] for the feedback arc
set problem, we gave a randomized bucket pivot algorithm that works as follows
[19,21]. (See, e.g., [37,38] for additional work inspired by Ailon’s idea.) Given
the pair order matrix for items U , choose an element u at random. Let β > 0 be
a constant such as 1/4. Divide U into three sets:

V = {v ∈ U | 0.5− β ≤ T (u, v) < 0.5 + β}
U1 = {v ∈ U | 0 ≤ T (u, v) < 0.5− β}
U2 = {v ∈ U | 0.5 + β ≤ T (u, v) ≤ 1}

Then V forms one of the buckets of the answer, and the others are obtained by
calling the algorithm recursively on U1 and U2.

The bucket pivot algorithm achieves on expectation a constant approximation
ratio for the NP-complete task of describing the given pair order matrix. Also
in practice the performance of the algorithm is very good.
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The bucket pivot algorithm requires as input the pair order matrix. This
information is not immediately available in the seriation task, and it turns out
to be relatively cumbersome to obtain the pair order matrix. This is a pity, as
the simplicity of the bucket pivot algorithm would make it very useful.

Question 4. Can the pivot idea be used directly on paleontological data?

7 Probabilistic Models

The previous approaches have been combinatorial in nature. A natural alternative
is to consider probabilistic models. In [18] we described a straightforward proba-
bilistic model for the seriation task. The parameters that are used to describe the
data are the origination and extinction time for each taxon, the ordering of the
sites, and for the probabilities of errors (wrong zeros and wrong ones). When the
ordering of the sites is given, the origination and extinctionparameters describe the
interval in which the taxon is assumed to be present. An occurrence of the taxon
outside this interval is considered to be an error, as is any nonoccurrence inside this
interval. Given the parameters, the likelihood of the data depends on the number
of false and true ones and zeros. The task we consider is to find parameter vectors
that yield high likelihood, i.e., have a small number of false ones and zeros.

The model can easily be augmented to incorporate stratigraphic or geochrono-
logic information by requiring that the orderings satisfy the given hard con-
straints.

We used Markov chain Monte Carlo (MCMC) methods to find a posterior
distribution for the parameters of the model. The design of suitable update
operations for the parameters is challenging, as the search space is large; con-
vergence of the MCMC method is also an issue. Applied to the NOW database
data [32] the method shows how the ordering of the sites is in some cases were
clearly determined, while there are also blocks of sites within which the order of
the sites is more or less unspecified.

8 Concluding Remarks

We have described briefly some of the approaches that can be used to obtain
total and partial orders from 0-1 data. The main motivating application is the
seriation problem in paleontology. The methods depend on the application via
the requirement of consecutive ones, i.e., that each taxon occurs and vanishes
exactly once. Similar types of requirements are present also in other applications
such as information propagation [39], where nodes receive a pieces of information,
each from a single source. Document data provides also a challenging application
area for the discovery of total and partial orders.
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Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS
(LNAI), vol. 2837. Springer, Heidelberg (2003)

16. Lebanon, G., Lafferty, J.D.: Cranking: Combining rankings using conditional prob-
ability models on permutations. In: ICML (2002)

17. Gionis, A., Kujala, T., Mannila, H.: Fragments of order. In: KDD 2003 (2003)
18. Puolamäki, K., Fortelius, M., Mannila, H.: Seriation in paleontological data using

Markov Chain Monte Carlo methods. PLoS Computational Biology 2(2) (February
2006)

19. Gionis, A., Mannila, H., Puolamaki, K., Ukkonen, A.: Algorithms for discovering
bucket orders from data. In: KDD (2006)

20. Fortelius, M., Gionis, A., Jernvall, J., Mannila, H.: Spectral ordering and
biochronology of european fossil mammals. Paleobiology 32(2), 206–214 (2006)



Finding Total and Partial Orders from Data for Seriation 25

21. Ukkonen, A.: Algorithms for Finding Orders and Analyzing Sets of Chains. PhD
thesis, Helsinki University of Technology (2008)

22. Ukkonen, A., Mannila, H.: Finding outlying items in sets of partial rankings.
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Extended Abstract

For many centuries scientists have wondered how the human brain represents
thoughts in terms of the underlying biology of neural activity. Philosophers,
linguists, cognitive scientists and others have proposed theories, for example
suggesting that the brain organizes conceptual information in hierarchies of con-
cepts, or that it instead represents different concepts in different local regions of
the cortex.

Over the past decade rapid progress has been made on the study of human
brain function, driven by the advent of modern brain imaging methods such as
functional Magnetic Resonance Imaging (fMRI), which is able to produce three
dimensional images of brain activity at a spatial resolution of approximately one
millimeter. Using fMRI we have spent several years exploring the question of
how the brain represents the meanings of invididual words in terms of patterns
of neural activity observed with fMRI. The talk accompanying this abstract will
present our results, and the use of machine learning methods to analyze this
data and to develop predictive computational models. In particular, we ([1],[2])
have explored the following questions:

– Can one observe differences in neural activity using fMRI, as people think
about different items such as “hammer” versus “house”? Many researchers
have now demonstrated that fMRI does indeed reveal differences in neural
activity due to considering different items. We present results [1] showing
that it is possible to train a machine learning classifier to discover the dif-
ferent patterns of activity associated with different items, and to use this to
classify which of several items a person is considering, based on their neural
activity.

– Are neural representations of concepts similar if the stimulus is a word, ver-
sus a line drawing of the object? We tested this question by asking whether
a machine learning classifier trained on fMRI data collected when a person
reads words, could successfully distinguish which item they were thinking
about when the stimuli were line drawings. The classifier performed nearly
as accurately classifying fMRI activity generated by line drawing stimuli as
by word stimuli, despite being trained on word stimuli. This result suggests
that the neural activity captured by the classifier reflects the semantics of
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the item, and not simply some surface perceptual features associated with
the particular form of stimulus.

– Are neural representations similar across different people? We tested this
question by asking whether a machine learning classifier trained on fMRI
data collected from a group of people, could successfully distinguish which
item a new person was thinking about, despite the fact that the classifier had
never seen data from this new person. These experiments were performed
for stimuli corresponding to concrete nouns (i.e., nouns such as “bicycle”
and “tomato” which describe physical objects). We found the answer is yes,
although accuracies vary by person. This result suggests that despite the
fact that invididual people are clearly different, our brains use similar neural
encodings of semantics of concrete nouns.

– Can we discover underlying principles of neural representations sufficient
to develop a computational model that predicts neural representations for
arbitrary words? We recently developed a computational model that predicts
the neural representation for any concrete noun. While imperfect, this model
performs well on the 100 words for which we have data to test it. The model is
trained using a combination of fMRI data for dozens of words, plus data from
a trillion word text corpus that reflects the way in which people typically
use words in natural language. This model represents a new approach to
computational studies of neural representations in the human brain.
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Rebecca Hutchinson, Vicente Maleve, Rob Mason, Mark Palatucci, Francisco
Pereira, Indra Rustandi, Svetlana Shinkareva, Wei Wang and others. We are
grateful for support from the W.M. Keck foundation and the National Science
Foundation.
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Abstract. We propose a well-founded method of ranking a pool of m
trained classifiers by their suitability for the current input of n instances.
It can be used when dynamically selecting a single classifier as well as in
weighting the base classifiers in an ensemble. No classifiers are executed
during the process. Thus, the n instances, based on which we select the
classifier, can as well be unlabeled. This is rare in previous work. The
method works by comparing the training distributions of classifiers with
the input distribution. Hence, the feasibility for unsupervised classifica-
tion comes with a price of maintaining a small sample of the training
data for each classifier in the pool.

In the general case our method takes time O
(
m(t + n)2

)
and space

O(mt + n), where t is the size of the stored sample from the training
distribution for each classifier. However, for commonly used Gaussian and
polynomial kernel functions we can execute the method more efficiently.
In our experiments the proposed method was found to be accurate.

1 Introduction

The problem of dynamic classifier selection arises prominently in data stream
classification [1], but it is also present in, e.g., tracking recurring drifting concepts
[2,3], dynamical learning algorithm selection [4], and weighting or selecting the
base classifiers in an ensemble [5,6]. All of these situations are dynamic in the
sense that a classification algorithm has not been fixed beforehand in a separate
training phase. Rather, the instances that are observed online affect our choice.

For example, in concept drifting the distribution underlying the data keeps
changing over time. Often the states of the distribution reoccur after a while.
Thus, it is useful to store and restore the data and classifiers of the past. Most
of the practical restoring methods include choosing the classifier with the best
fit for the current input. This can be the case with a single classifier [2] and with
ensemble classifiers [6,7]. In the latter case the ranking information is used to
weight the responses of classifiers depending on their suitability for the current
input.

In either case, we have a set (pool) H = {h1, h2, . . . , hm} of varying kinds of
classifiers h : X → Y available. The classifiers are trained on dissimilar instance
distributions. Each classifier hi maps any instance x ∈ X to a class label hi(x) ∈
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Y. Assume also that we can easily associate with each classifier a random sample
drawn from its underlying training set. Moreover, we have a sequence of new
instances (x) = x1, x2, x3, . . . , xn available; they may be labeled (belong to
X ×Y) or not (belong to X ). Keep in mind that this sequence may only be the
first batch from a longer sequence.

How should we proceed when we want to obtain a good classifier for (x)? If the
sequence is labeled the most straightforward approach, of course, is to employ
the most suitable learning algorithm (see e.g. [8]), feed (x) as training set, and
take the resulting classifier as our choice. However, the set (x) may be small
when compared to the training sets on which the classifiers in H were trained.
Also, the classifiers in the pool may, e.g., be more general than is possible to
attain by training a new one.

Furthermore, if the classifiers are not of the same type, it is possible that
different types of classifiers are chosen to best suit the underlying distributions.
According to the “No Free Lunch” theorems [9] no single classifier type is su-
perior in all situations. Experimental evidence also supports this [8]. Because of
all these reasons, we concentrate on methods that choose the classifier from the
pool H.

The standard approach to choosing a classifier from H is to execute each
of them on the input sequence (x) and choose the most accurate one. This
is the traditional solution to the dynamic classifier selection problem and has
been used, e.g., by Watanabe [10]. Furthermore, the same method has generally
been used for weighting the classifiers in an ensemble [6]. Assuming linear-time
execution of classifiers, the time requirement of this procedure is O(mn) for
m classifiers and an example sequence of length n. In this case the sequence
(x) needs to be labeled. Thus, the method is infeasible for, e.g., uncategorized
web pages. We are aiming at an efficient solution that would also let us use
unsupervised learning.

Basically the method that we propose, MMDSel, compares sample distribu-
tions. This is done by maintaining a small sample of the training data for each
classifier in the pool H. However, it is not always necessary to store the samples
explicitly. MMDSel gives the similarity of the samples drawn from the training
data with the input sequence (x). Thus, we can either rank the classifiers or se-
lect the one having a training distribution most similar to the input distribution.
The main advantage of the method is that no classifier needs to be executed.
Hence, it is useful in at least three different situations. First and most impor-
tantly, MMDSel can be used in unsupervised environments. Second, it may
be more efficient when execution of classifiers is inefficient. There may also be
other reasons— like privacy issues [11] — to prevent unnecessary classification.
Third, our method does not need extensive preparation operation other than
the sample storing (cf., e.g., meta-learning approaches [12]). Thus, the method
is feasible for dynamic setting where the pool H may change online.

Most earlier approaches are usable only in the supervised setting [2,5]. How-
ever, Ali and Smith [8] aimed to find the most suitable classifier types for different
kinds of distributions using fixed complexity measures. Some of the measures are
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statistical and depend only on the distribution of the data. Thus, the approach
is also feasible for unsupervised learning. Nevertheless, Ali and Smith did not
really study dynamic selection of trained classifiers. Rather, they aimed to find
a rule-based classifier type selection grounded on prior knowledge of the prob-
lem. Moreover, Zhu, Wu, and Yang [1] gave a method in data stream model
that includes partitioning the whole instance space into subsets according to the
feature values. The approach uses class labels of instances only in finding the
classification accuracy of base classifiers for these subsets. Hence, the method
could partly be used under unsupervised conditions.

A field with some similarity with classifier selection is choosing with expert
advice [13]. Here the task is to minimize the amount of unsatisfactory decisions
for a sequence of tasks. Traditionally the experts and the distribution underlying
the decision are quite static. Similarly, we also aim to find the expert that is
the best in hindsight. However, in dynamic classifier selection framework the
distribution alters all the time and, thus, we are interested in single decision,
not in the decision sequence. We do not necessarily have any optimal classifier;
any single classifier would usually have been a poor choice for the whole sequence.
Rather the best classifier depends entirely on the current distribution. Also, the
set of classifiers H may alter.

The remainder of this paper is organized as follows. In Section 2 we briefly
examine the theoretical background of MMDSel. Then, in Section 3, we present
a way to compute our method efficiently with some kernels. Section 4 reports
on an empirical evaluation of the proposed approach. After that we give the
concluding remarks of this work.

2 Classifier Selection Using Samples of Training
Examples

The basic idea of MMDSel is to compare a kind of a fingerprint of the training
distribution of a classifier with the one of the input distribution. One could, of
course, use the classifier itself as a fingerprint. That is, we could train a new
classifier for the input examples (x) and search for the nearest one in the set H.
If the classifiers have an explicit weight vector that includes all the information
about the classifier, we can simply search for the most similar weight from the
pool. Support vector machines (SVMs) with a linear kernel are an example
of such classifiers. With the trivial search the best classifier can be found in
O(m + f(n)) time and O(m + n) space. Here the function f(n) is the average
time consumption of classifier learning a set of n elements. Nearest neighbor
methods [14,15,16] could be used to reduce the time requirement. This method,
though, is only usable for certain classifiers and only in the supervised setting.
Also, in our experiments the method appeared quite unreliable.

Instead, MMDSel rather stores a sample of the training set of each classifier.
The sample is in fact a fingerprint of the training distribution. If the input
sequence (x) is drawn from the same (or a very similar) distribution, we should
choose the classifier trained for it— most likely it is the most suitable one. To
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be exact, let the set S = {s1, s2, . . . , sm} contain the training samples of size t
for the m classifiers in H. If we select the sample that is most similar with the
sequence (x) of length n, we should be able to find the classifier that best fits
the current input without executing any of the classifiers.

The methods that compare distribution similarity via samples are called two-
sample tests. For example, a two-sample test based on maximum mean discrep-
ancy (MMD) proposed by Gretton et al. [17,18] and Smola et al. [19] uses
O
(
(t + n)2

)
time and O(t + n) space. On the other hand, Borgwardt et al. [20]

propose computing MMD in linear O(t + n) time by randomized approximation.
However, by our experiments, this leads to a significant reduction of accuracy.

MMD has previously been used for a somewhat similar application by Huang
et al. [21]. They use MMD values to solve the sample selection bias problem
where the test distribution differs from the training distribution.

There are several additional minor advantages in the two-sample approach
adopted in MMDSel. Firstly, due to statistical insignificance of the labels, mis-
labeled examples have only a minor impact on the result. Also, in some cases
this measure for the suitability of the classifier may be more appropriate than
the error rate of classifiers used in the traditional solution [8].

2.1 Comparing Distributions with MMD

Let us now briefly introduce MMDSel and the measure MMD for executing it.
The measure was originally designed for two-sample tests in which the problem
is to find out whether two given samples come from different distributions. For-
mally we are given two samples X and Y drawn i.i.d. from distributions D1 and
D2, respectively, and we want to know whether D1 �= D2. In our application it
would be useful to know also the “distance” or dissimilarity d(D1, D2) between
the distributions because the distribution may have changed only slightly.

In fact, MMD is a measure of dissimilarity— or more specifically, discrep-
ancy— between the distributions. It is essentially the maximum difference be-
tween the mean of test function values on the distributions. Thus, informally, if
the MMD between two samples is near zero the distributions are very similar.
With the computed MMD value there are multiple methods to decide if we have
enough evidence to reject the null hypothesis D1 = D2 or not [17]. Because we
are only interested in rating the alternatives due to their similarity, the measure
for the discrepancy itself is enough for our needs.

Formally MMD is defined by Gretton et al. [17] as follows.

Definition 1 Let F be a class of test functions f : X → IR and let D1 and D2

be distributions defined on the domain X . Then the maximum mean discrepancy
is

MMD[F , D1, D2] := sup
f∈F

(Ex∼D1 [f(x)]−Ey∼D2 [f(y)]) .

We select F to be a reproducing kernel Hilbert space (RKHS) with an associated
kernel k. The kernel selection lets us control which properties of distributions
are emphasized. Thus, we should choose the kernel according to the features
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in which we have an interest. Gretton et al. [17] also proved that, in compact
domains X , with so-called universal kernels [22] MMD attains zero value if
and only if D1 equals D2. In practice this means that, given that the samples
are large enough, two different distributions can be separated with a universal
kernel family. Steinwart [22] proved that, e.g., Gaussian and Laplacian kernels
are universal. Even if we are not interested in the two-sample test itself, these
kernels could be useful in some situations.

Gretton et al. [17] devised an easier way to calculate MMD owing to the fact
that in RKHS the function f can be evaluated by the inner product f(x) =
〈k(x, ·), f〉. Hence, let x and x′ be independent random variables with distribu-
tion D1 and, similarly, y, y′ ∼ D2. The square of MMD behaves identically as a
measure for discrepancy. For it a more useful form can be derived [17]:

MMD
2[F , D1, D2] = Ex,x′∼D1 [k(x, x′)]− 2Ex∼D1,y∼D2 [k(x, y)]

+ Ey,y′∼D2 [k(y, y′)] .
(1)

In practice we are dealing with samples X and Y drawn i.i.d. from D1 and D2,
respectively. Let (z1, ..., zn) be i.i.d. random variables, where zi = (xi, yi) and
xi ∈ X, yi ∈ Y . Gretton et al. [17] proved that an unbiased empirical estimate
for MMD squared is

MMD
2[F , X, Y ] =

1
n(n− 1)

n∑
i�=j

h(zi, zj) , (2)

where h(zi, zj) = k(xi, xj)+ k(yi, yj)− k(xi, yj)− k(xj , yi). Using this we can
easily compute the MMD value.

Gretton et al. [17] also gave a biased estimate that can be computed under
some restrictions1 for the kernel function as

MMD
2[F , X, Y ] =

1
n2

n∑
i,j=1

k(xi, xj)−
2
nt

n,t∑
i,j=1

k(xi, yj)

+
1
t2

t∑
i,j=1

k(yi, yj) ,

(3)

where n and t are the sizes of samples X and Y . The estimate is biased, but there
is an upper bound for the bias [17]. In our experiments we found this estimate
to be slightly more accurate.

To execute MMDSel and rank the classifiers in a pool of size m we have to
compute MMD for m pairs of samples. This results in the dissimilarity of each
classifier with the current input distribution. In other words we have ranked the
classifiers by their suitability for the current input. Thus we can easily either
weight the classifiers according to the rank or choose the most suitable one.

1 It is enough that for two i.i.d. random variables x, x′ ∼ D: Ex,x′∼D[k(x, x′)] < ∞
[17].
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Because computing MMD for each sample pair takes O
(
(t + n)2

)
time,

MMDSel can be executed in time O
(
m(t + n)2

)
and space O(mt + n). How-

ever, below we show that for some kernels the evaluation can be done much more
efficiently.

3 Computing MMD Efficiently

We now discuss some ways to improve the efficiency of MMDSel. As mentioned
the choice of a kernel affects the value of MMD. Thus, we should choose the
kernel that is able to track the essential attributes of distributions — i.e., those
that determine the similarity. For example, with a linear kernel MMD clearly
indicates the difference between expected values.

3.1 Polynomial Kernels

For often-used polynomial kernels (1) can be simplified significantly. This leads
to efficient computation of MMDSel.

The main idea of the optimization is the following. For example, for a symmetric
and linear (e.g., Euclidean inner product in IR) kernel (1) can be computed by

MMD
2[F , D1, D2] = k(Ex∼D1 [x],Ex∼D1 [x])− 2 k(Ex∼D1 [x],Ey∼D2 [y])

+ k(Ey∼D2 [y],Ey∼D2 [y]) .
(4)

Hence, we do not need to store the sample for each classifier explicitly. It suffices
to store the expected values. Moreover, it is enough to compute the expected
value of input examples only once during the test. The time and space require-
ment for these preparations is clearly O(mtd) for d dimensional data. On the
other hand, during the actual selection process only a constant amount of inner
products are calculated, yielding a time requirement of O((m + n)d).

The optimization can be generalized to all the polynomial kernels (〈·, ·〉+ c)p

of a finite integer degree p, where c ≥ 0 is a constant. Using the technique
introduced by Raykar et al. [23] polynomial kernels can be calculated in

rpd =
(

p + d

d

)
time and space. Hence, MMDSel can be executed in O((m + n)rpd) time and
space with O(mtrpd) time and space preparation. With the natural assumption
that p � d, the value rpd can be upper bounded by O(dp).

Compared to the brute force solution in O
(
md(t + n)2

)
time and O(d(mt + n))

space, the optimized MMDSel is useful for low values of p (e.g., quadratic or
linear kernel) and for very large values of t or n.

3.2 Gaussian Kernels

Simple polynomial kernels may not be enough for our needs. Steinwart [22]
defined kernel classes to be universal if they are dense on compact domains.
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These kernels can approximate any other kernel if the sample sizes are increased
enough. If we want to use a universal kernel, e.g., a Gaussian one, a similar
optimization method can be used to approximate them.

Yang et al. [24] and Raykar et al. [23] present an improved fast Gaussian
transformation (IFGT). Their approach is based on calculating only the first
terms of the Taylor series representation of Gaussian kernel. In our case the
basic idea of IFGT is to approximate the Gauss transform at a chosen point y∗

G (xj) =
t∑

i=1

exp
(
−‖xj − yi‖

2 /σ2
)

=
t∑

i=1

exp
(
−‖yi − y∗‖

2
/σ2

)
exp

(
−‖xj − y∗‖

2
/σ2

)
· exp

(
2 〈xj − y∗, yi − y∗〉 /σ2

)
.

(5)

However to gain accuracy they cluster the space and replace the vector y∗ with
the centers of these clusters.

With IFGT the Gaussian kernel can be approximated in

O
(
nk′r(p′−1)d + nk

)
time with

O
(
t log k + tr(p′−1)d

)
time preparation. Here k < t is the number of clusters in the example space
and k′ < k the maximum number of neighbor clusters and p′ the number of
Taylor series terms to be computed. Both the p′ and k′ depend on the desired
error bound ε > 0 and k′ also depends on Gaussian kernel bandwidth. The space
usage is O

(
kr(p′−1)d + t + n

)
. Recall that rpd = O(dp).

The procedure is interesting in our application, because if we cluster the whole
instance space at once, we can reduce the running time significantly. If the values
corresponding to y∗ in (5) are same for every classifier on the pool H we have to
compute the terms including yj in equation only once during the computation
of MMDSel.

Hence, when computing (1) we can calculate the term Ey,y′∼D2 [k(y, y′)] com-
pletely for all the samples in S beforehand in the preparation phase. When
Ex∼D1,y∼D2 [k(x, y)] is expressed using (5) this is also the case for parts includ-
ing y. Thus the preparation phase takes

O
(
mt

(
log k + dp′

))
time.

Finally in the online phase we compute the term Ex,x′∼D1 [k(x, x′)] and the
rest of the term Ex∼D1,y∼D2 [k(x, y)]. This takes time

O
(
(m + nk′) dp′

+ nk
)

.
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Table 1. Summary of asymptotic time and space requirement of MMDSel

Online Preparation
Kernel Time Space Time Space

Linear O((m + n)d) O((m + n)d) O(mtd) O(mtd)
Integer polynomial O((m + n)dp) O((m + n)dp) O(mtdp) O(m(td + dp))

Gaussian (IFGT) O
(
(m + nk) dp′

)
O
(
mndp′

)
O
(
mt

(
log k + dp′

))
O
(
mtdp′

)
General O

(
md(t + n)2

)
O(d(mt + n)) — —

General randomized O(md(t + n)) O(d(mt + n)) — —

Traditional method mnd nd — —

For Gaussian kernels there are also other optimization approaches. For ex-
ample Lee, Gray and Moore [25] give an approach based on space partitioning
trees. Also Herbster [26] presents a simple way to compute additive Gaussian
kernels even more efficiently.

A summary of the asymptotic time and space requirement of MMDSel in
different settings is presented in Table 1. The randomized general version of
MMDSel is based on the randomized linear time computation of MMD pro-
posed by Borgwardt et al. [20].

4 Empirical Evaluation

Let us now evaluate MMDSel experimentally. As a reference approach we use
the traditional solution of executing each classifier on the input and selecting
the most accurate one. The accuracy of a classifier is computed by counting how
many times it predicts the right label given by the data set. The experiments
are executed on domains of the UCI machine learning repository and MNIST
datasets. MNIST consists of images of handwritten digits from 0 to 9. From the
UCI repository we choose the classification datasets with the greatest number
of different class labels.

For every dataset with l different labels we create all the
(

l
2

)
different binary

classification tasks. The labels for each task are changed to ±1 and a SVM
classifier is trained for each task. A sample of size 20% from each of the training
sets for MMDSel is stored.

The test examples are divided similarly and for each test the best classifier is
chosen. Hence, for each test set there is exactly one trained classifier with the
same training distribution. We report how many times different methods select
this one correct classifier. The test set size is 20% of the training set size.

In UCI datasets some labels are removed due to small number of examples.
Also some textual values are changed to numerical ones. In addition all the
datasets are randomly permuted. Due to efficiency the size of training set is
restricted to 1 000 instances.

We have implemented the introduced methods in Matlab with both linear
and Gaussian kernel. The kernel width for Gaussian kernels is chosen with the
rule-of-thumb

σ =
√

median distance between points/2 .



36 T. Aho, T. Elomaa, and J. Kujala

In the experiments MMDSel chooses the classifier with the smallest distribution
discrepancy, regardless of the value. For MMD computation [17] we use the
biased estimate of (3), because it is slightly more accurate than the unbiased
one of (2). The reported MMDSel versions are tried for unlabeled data because
removing labels does not affect the accuracy.

The accuracy of the methods in at least 1 000 separate tasks are reported in
Table 2. Each task results in either a right or a wrong answer for a method.

In the overall performance MMDSel prevails. In nearly all of the data sets
MMDSel with a Gaussian kernel seems to take the lead with the linear kernel
version being slightly worse. However, with the traditional SVM classification
the linear kernel version surpasses the Gaussian one.

There are, however, some interesting exceptions. The vowel data set includes
features of English pronounced vowels. The traditional method is better on this.
The glass data set contains the chemical composition of different glass types.
The traditional method overtakes linear MMDSel version also on this set.

It is worth noting that the setting is quite unfavorable for the classification
approach. The behavior of a classifier depends essentially on the hyperplane
that is computed to separate training classes. Thus, in the testing phase we
are searching for the classifier with a hyperplane separating the test classes.
However, because of the test setting there could be multiple hyperplanes that
give similar classification for the test set. Hence, many hypotheses would gain
good classification accuracy. This could be partial explanation for the worse
performance of the classification method. However, in reality the classification
accuracies in our experiments seem to be quite diverse. Usually alone the chosen
classifier has the best accuracy.

Gaussian kernel SVM performed surprisingly poorly in these evaluations. For
example with the ecoli data set the result is only slightly better than a random
guess. This is also emphasized with high dimensional data. A natural reason for
this is the ’curse of dimensionality’ that affects the Gaussian kernel [27]. This

Table 2. Accuracy of different methods after at least 1 000 test tasks

Data set SVM Classification MMDSel

Name Labels Dimension Gaussian Linear Gaussian Linear

mnist 10 784 4.3 95.4 100.0 100.0
abalone 14 8 5.8 8.3 18.2 10.1

ecoli 5 7 11.3 56.3 78.9 75.0

glass 5 9 38.5 39.5 46.2 36.3

letter 26 16 77.5 84.2 100.0 97.6

vowel-context 10 12 38.4 51.4 21.6 18.8

krkopt 18 6 26.8 25.6 32.9 28.0

led with 10% noise 10 7 32.9 51.0 93.1 87.3

mfeat 10 649 9.8 64.6 91.1 74.1

pendigits 10 16 28.0 76.9 100.0 100.0

Mean — — 27.3 55.3 68.2 62.7
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appears because of the small number of training examples compared to their
dimension. Interestingly MMDSel does not seem to be affected by this. Maybe
this is because MMDSel tracks down the underlying distribution instead of
single points.

However, in additional experiments optimizing the Gaussian kernel width
seemed to improve the SVM performance somewhat. Nevertheless, it did not
reach the performance of linear SVM version on the high dimensional data sets.
For example with ecoli data set the Gaussian SVM attained 44.0% accuracy
with a smaller kernel width.

In summary, MMDSel would appear to offer a viable alternative to the tra-
ditional method. Only a small stored sample of the training distribution suffices
to let us choose the correct classifier with high probability without even knowing
the class labels of instances.

5 Conclusions

In this paper we introduced a method of ranking a pool of classifiers by their
suitability for the current input. The MMDSel method is based on the similar-
ities of classifier training distributions and the current input distribution. Thus,
it is suitable for unsupervised learning. This advantage is, to the best of our
knowledge, rare in previous work. Also, classification algorithm outputs are not
used and thus the type of algorithms is entirely unlimited. Moreover, the pool
may consist of different types of algorithms. We also showed that the test can
be computed asymptotically efficiently with some optimization methods.

In our empirical evaluation the MMDSel with both linear and Gaussian
kernels seems to be accurate enough to be a viable alternative for solving the
given problem at least on some data.

There are some interesting open questions: Why the curse of dimensionality
does not seem to affect MMDSel on Gaussian kernel as seen in our experiments?
Also, surely different well-founded methods in addition to MMD for finding
distribution similarities are possible.
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Abstract. In this paper, we argue that search heuristics for inductive rule learn-
ing algorithms typically trade off consistency and coverage, and we investigate
this trade-off by determining optimal parameter settings for five different parame-
trized heuristics. This empirical comparison yields several interesting results. Of
considerable practical importance are the default values that we establish for these
heuristics, and for which we show that they outperform commonly used instan-
tiations of these heuristics. We also gain some theoretical insights. For example,
we note that it is important to relate the rule coverage to the class distribution,
but that the true positive rate should be weighted more heavily than the false
positive rate. We also find that the optimal parameter settings of these heuristics
effectively implement quite similar preference criteria.

1 Introduction

Evaluation metrics for rule learning typically, in one way or another, trade off consis-
tency and coverage. On the one hand, rules should be as consistent as possible by only
covering a small percentage of negative examples. On the other hand, rules with high
coverage tend to be more reliable, even though they might be less precise on the training
examples than alternative rules with lower coverage. An increase in coverage of a rule
typically goes hand-in-hand with a decrease in consistency, and vice versa. In fact, the
conventional top-down hill-climbing search for single rules follows exactly this prin-
ciple: starting with the empty rule, conditions are greedily added, thereby decreasing
coverage but increasing consistency.

In this work, we show that five well-known rule evaluation metrics (a cost trade-off,
a relative cost trade-off, the m-estimate, the F -measure, and the Klösgen measures)
provide parameters that allow to control this trade-off. After a brief discussion of these
heuristics, we will report on an extensive experimental study with the goal of determin-
ing optimal values for each of their respective parameters, which will allow us to draw
some interesting conclusions about heuristic rule learning.

2 Separate-and-Conquer Rule Learning

The goal of an inductive rule learning algorithm is to automatically learn rules that
allow to map the examples of the training set to their respective classes. Algorithms

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 40–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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differ in the way they learn individual rules, but most of them employ a separate-and-
conquer or covering strategy for combining rules into a rule set (5), including RIPPER

(3), arguably one of the most accurate rule learning algorithms today.
Separate-and-conquer rule learning can be divided into two main steps: First, a single

rule is learned from the data (the conquer step). Then all examples which are covered by
the learned rule are removed from the training set (the separate step), and the remaining
examples are “conquered”. The two steps are iterated until no more positive examples
are left. In a simple version of the algorithm this ensures that every positive example
is covered at least by one rule (completeness) and no negative example is included
(consistency). More complex versions of the algorithm will allow certain degrees of
incompleteness (leaving some examples uncovered) and inconsistencies (covering some
negative examples).

For our experiments, we implemented a simple separate-and-conquer rule-learner
with a top-down hill-climbing search for individual rules. Rules are greedily refined
until no more negative examples are covered, and the best rule encountered in this
refinement process (not necessarily the last rule) is returned. We did not employ explicit
stopping criteria or pruning techniques for overfitting avoidance, because we wanted to
gain a principal understanding of what constitutes a good rule evaluation metric.

3 Rule Learning Heuristics

As discussed above, individual rules should simultaneously optimize two criteria:

Coverage: the number of positive examples that are covered by the rule (p) should be
maximized and

Consistency: the number of negative examples that are covered by the rule (n) should
be minimized.

Thus, most heuristics depend on p and n, but combine these values in different ways.
A few heuristics also include other parameters, such as the length of the rule, but we
will not further consider those in this paper.1 In the following, we will closely follow
the terminology and notation introduced in (6). As an evaluation framework coverage
spaces (6), un-normalized ROC spaces, are used in the remainder of this paper. These
allow to graphically interpret evaluation metrics by their isometrics.

3.1 Basic Heuristics

True Positive Rate (Recall) htpr = hRecall = p
P

Computes the coverage on the positive examples only. It is – on its own – equivalent
to simply using p (because P , the total number of positive examples, is constant for a
given dataset). Due to its independence of covered negative examples, its isometrics are
parallel horizontal lines.

1 As longer rules typically cover fewer examples, we would argue that this is just another way
of measuring coverage. Also, in (8) it was recently found that including rule length does not
improve the performance on heuristics that have been derived by meta-learning.
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False Positive Rate hfpr = n
N

Computes the coverage on the negative examples only (N stands for the total number
of negative examples). Its isometrics are parallel vertical lines.
Full Coverage hCoverage = p+n

P+N
Computes the fraction of all covered examples. The maximum heuristic value is reached
by the universal theory, which covers all examples (the point (N, P ) of the coverage
space). The isometrics are parallel lines with a slope of −1 (similar to those of the
lower right graph in Figure 1).

3.2 Composite Heuristics

The heuristics shown in the previous section only optimize one of the two criteria. Two
simple criteria, which try to optimize both criteria are
Precision hPrecision = p

p+n
Computes the fraction of correctly classified examples (p) among all covered examples
(p+n). Its isometrics rotating around the origin.
Weighted Relative Accuracy (WRA) hWRA = htpr − hfpr

Computes the difference between the true positive rate and the false positive rate. The
upper middle graph of Figure 1 shows the isometrics of WRA.

However, these two heuristics are known to have complementary disadvantages. Pre-
cision is known to overfit the data, i.e., to strongly prefer consistency over coverage.
Conversely, the experimental evidence given in (11), which is consistent with our own
experience, suggests that WRA has a tendency to overgeneralize, i.e., that it places too
strong emphasis on coverage.

Thus, it is necessary to find the right trade-off between consistency and coverage.
Many other heuristics implement fixed trade-offs between these criteria. In the next
section, we will discuss five heuristics that allow to tune this trade-off with a parameter.

3.3 Parametrized Heuristics

In this section we show that the heuristics which we consider in this work all have a
parameter that trades off consistency for coverage, but do so in different forms. The
two cost measures directly trade off absolute or relative positive and negative coverage.
Thereafter, we will see three measures that use hPrecision for optimizing consistency, but
use different measures (hRecall, hWRA, hCoverage) for optimizing coverage.
Cost Measure hcost = c · p− (1 − c) · n
Allows to directly trade off consistency and coverage with a parameter c ∈ [0, 1]. c = 0
only considers consistency, c = 1 only coverage. If c = 1/2, the resulting heuristic
(hAccuracy = p − n) is equivalent to accuracy, which computes the percentage of cor-
rectly classified examples among all training examples. The isometrics of this heuristics
are parallel lines, with a slope of (1−c)/c.
Relative Cost Measure hrcost = cr · htpr − (1− cr) · hfpr

Trades off the true positive rate and the false positive rate. This heuristic is quite similar
to hcost. In fact, for any particular data set, one can choose c = N

P+N · cr to transform
the cost measure into the relative cost measure. However, this normalization may (and
will) make a difference if the same value is used across a wide variety of datasets with
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different class distributions. Clearly, setting cr = 1/2 is compatible (as defined in (6))
with WRA.

F -Measure hF-Measure = (β2+1)·hPrecision·hRecall

β2·hPrecision+hRecall

The F -measure (10) has its origin in Information Retrieval and trades off the basic
heuristics hPrecision and hRecall. Basically, the isometrics (for an illustration see (6)) are
identical to those of precision, with the difference that the rotation point is not in the
point (0, 0) but in a point (−g, 0), where g depends on the choice of β. If β → 0, the
origin moves towards (0, 0), and the isometrics correspond to those of hPrecision. The
more the parameter is increased the more the origin of the isometrics is shifted in the
direction of the negative N -axis. The observable effect is that the lines in the isometrics
becomes flatter and flatter. Conversely if β → ∞ the resulting isometrics approach
those of hRecall which are horizontal parallel lines.

m-Estimate hm-estimate =
p+m· P

P+N

p+n+m
The idea of this parametrized heuristic (2) is to presume that a rule covers m training
examples a priori, maintaining the distribution of the examples in the training set (m ·
P/(P+N) examples are positive). For m = 2 and assuming an equal example distribution
(P = N ), we get the Laplace heuristic hLaplace as a special case.

If we inspect the isometrics in relation to the different parameter settings, we ob-
serve a similar behavior as discussed above for the F -measure, except that the origin
of the turning point now does not move on the N -axis, but it is shifted in the direction
of the negative diagonal of the coverage space (cf. (6) for an illustration). m = 0 cor-
responds to precision, and for m → ∞ the isometrics become increasingly parallel to
the diagonal of the coverage space, i.e., they approach the isometrics of hWRA. Thus, the
m-estimate trades off hPrecision and hWRA.

Klösgen hKlösgen = (hCoverage)
ω ·
(
hPrecision − P

P+N

)
This family of measures was first proposed in (9) and trades off Precision Gain (the
increase in precision compared to the default distribution P/(P+N)) and Coverage. The
isometrics of Precision Gain on its own behave like the isometrics of precision, except
that their labels differ (the diagonal now always corresponds to a value of 0).

Setting ω = 1 results in WRA, and ω = 0 yields Precision Gain. Thus, the Klösgen
measure starts with the isometrics of hPrecision and first evolves into those of hWRA, just
like the m-estimate. However, the transformation takes a different route, with non-linear
isometrics. The first two graphs of Figure 1 show the result for the parameter settings
ω = 0.5 and ω = 1 (WRA), which were suggested by Klösgen (9).

With a further increase of the parameter, the isometrics converge to hCoverage. The
middle left graph shows the parameter setting ω = 2, which was suggested in (13).
Contrary to the previous settings, the isometrics now avoid regions of low coverage,
because low coverage is more severely penalized. A further increase of the parameter
results in sharper and sharper bends of the isometrics. The influence of WRA (the part
parallel to the diagonal) vanishes except for very narrow regions around the diagonal,
and the isometrics gradually transform into those of coverage.

Another interesting variation of the Klösgen measure is to divide hCoverage by 1 −
hCoverage instead of raising it to the ω-th power. It has been shown before (9) that this is

equivalent to correlation (hCorr = p·(N−n)−n·(P−p)√
P ·N ·(p+n)·(P−p+N−n)

).
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Fig. 1. Klösgen-Measure for ω = 0.5, 1, 2, 7, 30, 500

4 Experimental Setup

The primary goal of our experimental work was to determine settings for the parametri-
zed heuristics that are optimal in the sense that they will result in the best classifica-
tion accuracy on a wide variety of datasets. Clearly, the optimal setting for individual
datasets may vary.

We arbitrarily selected 27 tuning datasets from the UCI-Repository (1) for determin-
ing the optimal parameters. To check the validity of the found parameter settings, we
selected 30 additional validation datasets. The names of all 57 datasets could be found
in (7).

The performance on individual datasets was evaluated with a 10-fold stratified Cross
Validation implemented in Weka (12). As we have a large number of different individ-
ual results, a key issue is how to combine them into an overall value. We have exper-
imented with several choices. Our primary method was the macro-averaged accuracy
of one parametrization of a parametrized heuristic which is defined by the sum of all
accuracies (the fraction of correctly classified examples among all examples) of the
datasets normalized with the number of datasets. This method gives the same weight to
all datasets. Alternatively, one could also give the same weight to each example, which
results in micro-averaged accuracy. It is defined as the sum of all correctly classified
examples divided by the total number of examples among all datasets. In effect, this
method assigns a higher weight to datasets with many examples, whereas those with
few examples get a smaller weight.

As there are large differences in the variances of the accuracies of the individual
datasets, one could also focus only on the ranking of the heuristics and neglect the
magnitude of the accuracies on different datasets. Small random variations in ranking
performance will cancel out over multiple datasets, but if there is a consistent small
advantage of one heuristic over the other this will be reflected in a substantial difference
in the average rank (the sum of individual ranks normalized by the number of datasets).
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Algorithm 1. SEARCHBESTPARAMETER(a,b, i, h, dataSets)

accformer = accbest # global params
params = CREATELIST(a,b, i) # initialize candidate params
pbest = GETBESTPARAM(h,params,dataSets)
accbest = GETACCURACY(pbest)
# stop if no substantial improvement (t = 0.001)
if accbest − accformer < t then

return (pbest)
end if
# continue the search with a finer resolution
SEARCHBESTPARAMETER(pbest − i

2 , pbest + i
2 , i

10 , h, dataSets)

Finally, we also measured the size of the learned theories by the average number of
conditions.

5 The Search Strategy

This section describes our method for searching for the optimal parameter setting. Our
expectation was that for all heuristics, a plot of accuracy over the parameter value will
result in an inverse U-shape, i.e., there will be overfitting for small parameter values and
over-generalization for large parameter values, with a region of optimality inbetween.
Thus, we adopted a greedy search algorithm that continuously narrows down the region
of interest. First, it tests a wide range of intuitively appealing parameter settings to get an
idea of the general behavior of each of the five parametrized heuristics. The promising
parameters were further narrowed down until we had a single point that represents a
region of optimal performance.

Algorithm 1 shows the search procedure in detail. We start with a lower (a) and upper
(b) bound of the region of interest, and sample the space between them with a certain
interval width i. For measures with parameter space [0,∞) we used a logarithmic scale.
For each sampled parameter value, we estimate its macro-averaged accuracy on all
tuning datasets, and, based on the obtained results, narrow down the values a, b, and i.

Intuitively, the farther the lower border a and the upper border b of the interval are
away from the best parameter pbest, and the denser the increment, the better are our
chances to find the optimal parameter, but the higher are the computational demands.
As a compromise, we used the following approach for adjusting the values of these
parameters:

a ← pbest −
i

2
, b← pbest +

i

2
and i ← i

10
This procedure is repeated until the accuracy does not increase significantly. As we
compare macro-averaged accuracy values over several datasets, we adopted a simple
approach that stops whenever the accuracy improvement falls below a threshold t =
0.001.

Obviously, the procedure is greedy and not guaranteed to find a global optimum. In
particular, there is a risk to miss the best parameter due to the fact that the global best
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parameter may lie under or above the borders (if the best one so far is 1 for example,
the interval that would be searched is [0.5, 1.5]; if the global optimum is 0.4, it would
not be detected). Furthermore, we may miss a global optimum if it hides between two
apparently lower values. If the curve is smooth, these assumptions are justified, but
on real-world data we should not count on this. The second point can be addressed
by keeping a list of candidate parameters that are all refined and from which the best
one is selected. Hence it has to be defined how many candidates should be maintained.
Therefore it is necessary to introduce a threshold that discriminates between a nor-
mal and a candidate parameter. It is not trivial to determine such a threshold. Due to
this the number of candidate parameters is limited to 3 (all experiments confirmed that
this is sufficient). The first problem could be addressed by re-searching the entire in-
terval at a finer resolution, but, for the sake of efficiency, we chose the more efficient
version.

However, also note that it is not really important to find an absolute global optimum.
If we can identify a region that is likely to contain the best parameter for a wide variety
of datasets, this would already be sufficient for our purposes. We interpret the found
values as good representatives for optimal regions.

6 Results

In this section we focus on the results of the search for optimal parameter values. We
will illustrate the average accuracy of the different heuristics under various parame-
ter settings, identify optimal parameters, compare their isometrics, and evaluate their
general validity.

6.1 Optimal Parameters for the Five Heuristics

Our first goal was to obtain optimal parameter settings for the five heuristics. As dis-
cussed above, the found values are not meant to be interpreted as global optima, but as
representatives for regions of optimal performance. Figure 2 shows the obtained perfor-
mance curves.

Cost Measures. Figures 2 (a) and (b) show the results for the two cost measures.
Compared to the other measures, these curves are comparably smooth, and optimal val-
ues could be identified quite easily. Optimizing only the consistency (i.e., minimizing
the number of negative examples without paying attention to the number of covered
positives) has a performance of close to 80 %. Not surprisingly, this can be improved
considerably for increasing values of the parameters c and cr. The best performing
values were found at c = 0.437 (for the cost metric) and cr = 0.342 (for the rela-
tive cost metric). Further increasing these values will decrease performance because of
over-generalization. If the parameter approaches 1, there is a steep descent because op-
timizing only the number of covered examples without regard to the covered negatives
is, on its own, a very bad strategy.

It is interesting to interpret the found values. Note, for example, that weighted rela-
tive accuracy, which has been previously advocated as rule learning heuristic (11), cor-
responds to a value of cr = 0.5, equally weighting false positive rate and true positives
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Fig. 2. Macro-averaged Accuracy over parameter values for the five parametrized heuristics

rate. Comparing this to the optimal region for this parameter, which is approximately
between 0.3 and 0.35, it can be clearly seen that it pays off to give a higher weight to
the true positive rate.2

This is confirmed by the results on the cost metric. The optimal value c = 0.437
corresponds to a ratio of positive to negative examples of P/N = 1−c/c ≈ 1.29. In
reality, however, for most example sets P < N (for multi-class datasets we assume that
P is the number of examples in the largest class). Thus, positive examples have to be
given a higher weight than negative examples.

It is also interesting to compare the results of the absolute and relative cost measures:
although, as we have stated above, the two are equivalent in the sense that for each
individual dataset, one can be transformed into each other by picking an appropriate
cost factor, the relative cost measure has a clearly better peak performance exceeding
85%. Thus, it seems to be quite important to incorporate the class distribution P/(P+N)

into the evaluation metric. This is also confirmed by the results of hm-estimate and hKlösgen.

Klösgen measures. Figure 2 (c) shows the results for the Klösgen measures. In the
region from 0.1 to 0.4 the accuracy increases continuously until it reaches a global op-
timum at 0.4323, which achieves an average accuracy of almost 85 %. After the second
iteration of the SearchBestParameter algorithm, no better candidate parameters than
0.4 were found. The accuracy decreases again with parametrizations greater than 0.6.
As illustrated in Figure 1, the interval [0, 1] describes the trade-off between Precision
(ω = 0) and WRA (ω = 1), whereas values of ω > 1 trade off between WRA and
Coverage. The bad performance in this region (presumably due to over-generalization)
surprised us, because we originally expected that the behavior that is exhibited by the

2 Interestingly, the optimal value of c = 0.342 corresponds almost exactly to the micro-averaged
default accuracy of the largest class (for both tuning and validation datasets). We are still
investigating whether this is coincidental or not.
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Fig. 3. Isometrics of the best parameter settings

Klösgen measure for ω = 2, namely to avoid low coverage regions, is preferable over
the version with ω = 0.5, which has a slight preference for these regions (cf. Figure 1).

F -measure. For the F -measure the same interval as with the Klösgen measures is
of special interest (Figure 2 (d)). Already after the first iteration, the parameter 0.5
turned out to have the highest accuracy of 82.2904 %. A better one could not be found
during the following iterations. After the second pass two other candidate parameters,
namely 0.493 with 84.1025 % and 0.509 with 84.2606 % were found. But both of them
could not be refined to achieve a higher accuracy and were therefore ignored. The main
difference between the Klösgen measures and the F -measure is that for the latter, the
accuracy has a steep descent at a very high parametrization of 1 · E9. At this point it
overgeneralizes in the same way as the Klösgen measures or the cost measures.

m-estimate. The behavior of the m-estimate differs from the other parametrized
heuristics in several ways. In particular, it proved to be more difficult to search. For
example, we can observe a small descent for low parameter settings (Figure 2 (e)). The
main problem was that the first iteration exhibited no clear tendencies, so the region in
which the best parameter should be could not be restricted.

As a consequence, we re-searched the interval [0, 35] with a smaller increment of 1
because all parameters greater than 35 got accuracies under 85.3 % and we had to re-
strict the area of interest. After this second iteration there were 3 candidate parameters,
from which 14 achieves the greatest accuracy. After a second run, 23.5 became optimal,
which illustrates that it was necessary to maintain a list of candidate parameters. After a
few more iterations, we found the optimal parameter at 22.466. The achieved accuracy
of 85.87 % was the optimum among all heuristics.

6.2 Behavior of the Optimal Heuristics

In this section, we compare the parameters which have been found for the five heuris-
tics (cf. also Table 1). In terms of macro-averaged accuracy, the m-estimate and the
relative cost measure clearly outperformed the other parametrized heuristics, as well as
a few standard heuristics, which we had also briefly mentioned in section 3.3). Interest-
ingly, the relative cost measure performs much worse with respect to micro-averaged
accuracy, indicating that it performs rather well on small datasets, but worse on larger
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Table 1. Comparison of various results of the optimal parameter settings of the five heuristics
(identified by their parameters), other commonly used rule learning heuristics, and JRip (Ripper)
with and without pruning, sorted by their macro-averaged accuracy

(a) on the 27 tuning datasets
average accuracy average

Heuristic Macro Micro Rank Size
m = 22.466 85.87 93.87 (1) 4.54 (1) 36.85 (4)
cr = 0.342 85.61 92.50 (6) 5.54 (4) 26.11 (3)
ω = 0.4323 84.82 93.62 (3) 5.28 (3) 48.26 (8)

JRip 84.45 93.80 (2) 5.12 (2) 16.93 (2)
β = 0.5 84.14 92.94 (5) 5.72 (5) 41.78 (6)
JRip-P 83.88 93.55 (4) 6.28 (6) 45.52 (7)

Correlation 83.68 92.39 (7) 7.17 (7) 37.48 (5)
WRA 82.87 90.43 (12) 7.80 (10) 14.22 (1)

c = 0.437 82.60 91.09 (11) 7.30 (8) 106.30 (12)
Precision 82.36 92.21 (9) 7.80 (10) 101.63 (11)
Laplace 82.28 92.26 (8) 7.31 (9) 91.81 (10)

Accuracy 82.24 91.31 (10) 8.11 (12) 85.93 (9)

(b) on the 30 validation datasets
average accuracy average

Heuristic Macro Micro Rank Size
JRip 78.98 82.42 (1) 4.72 (1) 12.20 (2)

cr = 0.342 78.87 81.80 (3) 5.28 (3) 25.30 (3)
m = 22.466 78.67 81.72 (4) 4.88 (2) 46.33 (4)

JRip-P 78.50 82.04 (2) 5.38 (4) 49.80 (6)
ω = 0.4323 78.46 81.33 (6) 5.67 (6) 61.83 (8)

β = 0.5 78.12 81.52 (5) 5.43 (5) 51.57 (7)
Correlation 77.55 80.91 (7) 7.23 (8) 47.33 (5)

Laplace 76.87 79.76 (8) 7.08 (7) 117.00 (10)
Precision 76.22 79.53 (9) 7.83 (10) 128.37 (12)

c = 0.437 76.11 78.93 (11) 8.15 (11) 122.87 (11)
WRA 75.82 79.35 (10) 7.82 (9) 12.00 (1)

Accuracy 75.65 78.47 (12) 8.52 (12) 99.13 (9)

datasets. These two heuristics also outperform JRIP (the WEKA-implementation of
RIPPER (3)) on the tuning datasets, but, as we will see further below, this performance
gain does not quite carry over to new, independent datasets.

Figure 3 shows the isometrics of the best parameter settings of the m-estimate, the
F -measure, and the Klösgen-measure.3 Interestingly, we can see that—within the con-
finements of their different functionals—all measures try to implement a very similar
heuristic. Minor differences are detectable in the low coverage region, where the F -
measure is necessarily parallel to the N -axis and the isometrics of the Klösgen measures
are slightly bended.

6.3 Validity of the Results

In order to make sure that our results are not only due to overfitting of the 27 tuning
datasets, we also evaluated the found parameter values on 30 new validation datasets.
The results are summarized in Table 1 for both the tuning datasets (left) and the test
datasets (right). The numbers in brackets describe the rank of each heuristic according
to the measure of the respective column.

Qualitatively, we can see that the relative performance of the heuristics in compari-
son to each other, and in comparison to the standard heuristics does not change much,
with the exception of the considerably better performance of JRIP, which indicates that
some amount of overfitting has happened in the optimization phase. However, the per-
formance of the best metrics is still comparable to the performance of JRIP, although
the latter achieves this performance with much smaller rule sizes.

Figure 4 displays a comparison of all classifiers done with the Nemenyi test suggested
in (4). All tuned heuristics (except the cost measure) outperform the standard heuris-
tics which is indicated by the large gap between them. The Klösgen measure is the only
parametrized heuristic which is not significantly better than the Accuracy heuristic.

3 Because of space limitations, we omit the corresponding figures for the cost metrics, but they
are just parallel lines with slopes that are determined by their respective optimal parameter
values (and, in the case of the relative cost measure, also by the class distribution).
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Fig. 4. Comparison of all classifiers against each other with the Nemenyi test. Groups of classi-
fiers that are not significantly different (at p = 0.05) are connected.

7 Conclusions

The experimental study reported in this paper has provided several important insights
into the behavior of greedy inductive rule learning algorithms. First, we have deter-
mined suitable default values for commonly used parametrized evaluation metrics such
as the m-estimate. This is of considerable practical importance, as we showed that these
new values outperformed conventional search heuristics and performed comparably to
the RIPPER rule learning algorithm. Second, we found that heuristics which take the
class distribution into account (e.g., by evaluate relative coverage instead of absolute
coverage) outperform heuristics that ignore the class distribution (e.g., the F -measure
which trades off recall and precision). Third, however, we found that for a good overall
performance, it is necessary to weight the true positive rate more heavily than the false
positive rate. This is most obvious in the optimal parameter value for the relative cost
metric, but can also be observed in other well-performing heuristics, whose isometrics
have a very steep slope in the important regions. Last but not least, we think that this has
been the most exhaustive experimental comparison of different rule learning heuristics
to date, yielding new insights into their comparative performance.

However, our results also have their limitations. For example, we have only evaluated
overall performance over a wide variety of datasets. Obviously, we can expect a better
performance if the parameter values are tuned to each individual dataset. We think that
the good performance of RIPPER is due to the flexibility of post-pruning, which allows
to adjust the level of generality of a rule to the characteristic of a particular dataset.
We have deliberately ignored the possibility of pruning for this set of experiments,
because our goal was to gain a principal understanding of what constitutes a good rule
evaluation metric for separate-and-conquer learning. It is quite reasonable to expect
that pruning strategies could further improve this performance. In particular, it can be
expected that the performance of parameter values that result in slight overfitting can
be considerably improved by pruning (whereas pruning can clearly not help in the case
of over-generalization). We are currently investigating this issue.
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Abstract. In this paper we propose a fast and incremental algorithm for learn-
ing model trees from data streams (FIMT) for regression problems. The algo-
rithm is incremental, works online, processes examples once at the speed they 
arrive, and maintains an any-time regression model. The leaves contain linear-
models trained online from the examples that fall at that leaf, a process with low 
complexity. The use of linear models in the leaves increases its any-time global 
performance. FIMT is able to obtain competitive accuracy with batch learners 
even for medium size datasets, but with better training time in an order of mag-
nitude. We study the properties of FIMT over several artificial and real datasets 
and evaluate its sensitivity on the order of examples and the noise level.  

1   Introduction 

Recently a new class of emerging applications has become widely recognized: appli-
cations in which data is generated at very high rates in the form of transient data 
streams. Examples of such applications include financial applications, network moni-
toring, security, telecommunication data management, web applications, manufactur-
ing, sensor networks, and many others. The rapid generation of continuous streams of 
information has challenged the storage, computation and communication capabilities 
of computing systems. These vast amounts of data, arriving in high speeds need em-
ployment of data mining techniques for near-real time analysis and extraction of hid-
den knowledge. However, traditional data mining techniques cannot be directly  
applied to data streams. This is because most of them require that the data resides on 
disk or in memory, performing multiple or sequential scans over the data, with an as-
sumption that the training set is finite and stationary.  

An ideal knowledge discovery system operating in a typical streaming scenario, would 
have to incorporate the new information at the speed it arrives, incrementally update the 
decision model to the most recent data and supply the user with an any-time ready-to-use 
model. The system cannot have control over the order of examples and can process each 
example only once, as it must be discarded afterwards to satisfy the requirement for min-
ing unbounded and rapid data streams. Such desired properties can be fulfilled by incre-
mental learning algorithms, also known as online, successive or sequential methods. One 
very interesting research line in the field of incremental tree induction, suggests maintain-
ing sufficient statistics required for computing the merit of a split at each decision node 
and performing the split decision only when there is enough statistical evidence in favor 
of a particular split test [1][2]. 
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Regression trees similarly as decision trees have the desirable properties of being 
both accurate and easy to interpret. They are known for their simplicity and efficiency 
when dealing with domains with large number of variables and cases. Therefore they 
are considered as an important class of regression models. Regression trees are ob-
tained using a fast divide and conquer greedy algorithm that recursively partitions the 
given training data into smaller subsets and recursively applies the same strategy to all 
of the subsets. The result is a tree shaped model with splitting rules in the internal 
nodes and predictions in the leaves. They are a natural generalization of decision trees 
for regression problems. Their successors, the model trees however are even more ac-
curate because they use linear regression to fit models locally to particular areas of in-
stance space instead of using a constant value. This makes them a more suitable 
choice in the regression domain. 

In this paper we propose a fast and incremental algorithm for building a linear 
model tree (FIMT) from data streams. The linear models in the leaves of the tree are 
obtained by incrementally training a single layer neural network, a perceptron, using 
the incremental gradient descent method. The proposed algorithm can guarantee high 
asymptotic similarity of the incrementally learned tree to the one learned in a batch 
manner if provided with enough data. FIMT does not require storing of examples, 
since examples are seen only once and discarded afterwards. The only memory that is 
required is for storing the sufficient statistic for building the tree and the memory 
needed to store the model. It is an any-time algorithm in a sense that it can offer to the 
user a ready-to-use model tree only after a reasonable number of examples are seen. 
The accuracy of the model improves smoothly in time, as new information is incorpo-
rated in the tree incrementally updating the model to the most recent data. This incre-
mental algorithm builds a competitive model tree faster than any batch algorithm for 
building model trees proposed thus far. We assume that the underlying distribution of 
the data is stationary. 

The paper is organized as follows. In the next section we give an overview of the 
related work in the field. Then we describe the FIMT algorithm and present an em-
pirical evaluation and sensitivity analysis. The paper concludes with the last section, 
outlining the main contributions of our work. 

2   Related Work 

2.1   Batch Learning of Model Trees 

Standard algorithms for building models trees use the standard divide-and-conquer 
approach. This approach assumes that the training set is finite and stationary, and re-
quires all the training data to be available before the learning process begins. The 
process starts with building a regression tree, and only after it assigns linear models in 
the tree leaves. The building phase consists of recursively splitting the instance space 
until the termination condition is met. The system typically chooses the split that 
maximizes some error reduction measure, with respect to the examples that fall at the 
current node. In Quinlan’s algorithm M5 [3] the author has used as evaluation meas-
ure the standard deviation reduction measure. A different and more computationally 
expensive approach is proposed in [4] using a measure that corresponds to the  
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distance from a linear regression plane. The termination criterion is met when the 
node is pure, i.e. the y values (values of predicted attribute) of all the instances that 
reach the node vary very slightly or when only a few instances remain. After the tree 
is grown in the pruning phase linear models are computed from the attributes refer-
enced by tests in the pruned branch, using standard regression techniques.  

2.2   Incremental Learning of Model Trees 

Although regression trees as well as model trees are an interesting and efficient class 
of learners, little research has been done in the area of incremental regression or 
model tree induction. To our best knowledge there is only one paper addressing the 
problem in hand, i.e. [5]. The authors follow the method proposed by Siciliano and 
Mola [6] applying it in an incremental way. The approach is based on the nice idea of 
using statistical tests that can guarantee a stable splitting decision, supported by 
enough statistical evidence. The statistical test that is being used is based on the resid-
ual sums of squares which can be computed incrementally as new examples are seen. 
As the authors state, the key advantage of using such statistical test in an incremental 
implementation is that, if there is not enough evidence to discount the null hypothesis 
(of not splitting) with the desired degree of confidence, no split will be made until fur-
ther evidence is accumulated.  

The rest of the related work is in the field of incremental decision tree learning. 
Since model trees derive from the basic divide-and-conquer decision tree methodol-
ogy, examining the relevant literature in incremental decision tree induction can give 
insights into how an incremental method for model tree induction can be developed. 

2.3   Incremental Learning of Decision Trees 

The problem of incremental decision tree induction fortunately has received the 
proper attention from the data mining community. There is a large literature on in-
cremental decision tree learning but our focus of interest is on one particular research 
line initiated by Musick, Catlett and Russell [7]. The authors in their work have noted 
that only a small sample from the distribution might be enough in order to determine 
the best splitting test in a decision node. The answer to the question how many exam-
ples would be needed to confidently state that one attribute is better than the rest, lies 
in using statistical tests that would provide enough evidence to justify the decision. 
Examples of such algorithms are the Gratch’s Sequential ID3 [1], VFDT [2] and the 
VFDTc algorithm [8]. The Sequential ID3 algorithm is a sequential decision tree in-
duction method which guarantees similarity of the learned tree to the batch tree based 
on a statistical procedure called the sequential probability ratio test, but its guarantee 
is much looser than the one of the Hoeffding tree algorithm (VFDT). On the other 
hand, the VFDT system is considered as state-of-the-art and represents one of the best 
known algorithms for classifying streams of examples. The system gives a strong 
guarantee that the produced tree will be asymptotically arbitrarily close to the batch 
tree, given that enough examples are seen [2]. This is achieved by using a statistical 
bound, known as the Hoeffding bound. This method has proven very successful in de-
ciding when to expand the tree and on which attribute. However, if two attributes 
have continuously similar values for the evaluation function, the Hoeffding bound 
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would need potentially large number of examples to determine the best one with high 
confidence. To avoid this situation, the authors have proposed a tie breaking mecha-
nism based on a user defined parameter τ, which determines the level of error that the 
user is willing to accept. When the situation is recognized as a tie, the leaf is trans-
formed into a node, and the chosen splitting attribute is the current best one. Since the 
most computationally expensive operation is re-computing the evaluation measure 
G(⋅) and it has proven un-efficient to perform the computation after every new exam-
ple, the authors proposed a user defined parameter nmin to specify the minimum num-
ber of examples that must be accumulated in a node before G is recomputed. Further 
more, the system has memory management feature which will deactivate the least 
promising leaves when system RAM is nearly all consumed. Reactivation is possible 
when the resources are available again. Some memory can be freed also by deactivat-
ing poor attributes early in the process of split evaluation. Our algorithm was imple-
mented using the VFML library of Domingos [9], and therefore it came natural to 
adopt many of the proposed features of VFDT. In the next section we describe the 
theoretical foundations and the properties of the FIMT algorithm. 

3   Fast and Incremental Model Tree Learner 

A crucial observation of several authors is that, in order to determine the attribute to 
test at a given node of a decision tree, instead of examining all the examples it may be 
sufficient to examine only a subset of the training examples that pass trough that 
node. This is the basis of our incremental approach. After examining a specified num-
ber of examples, a split can be performed and the following examples can be used for 
the children nodes created with the split. Exactly how many examples are necessary at 
each node so we can be sure that our decision is stable, can be determined using sta-
tistical bounds. We propose the use of the Chernoff bound as a statistical support of 
the splitting decision. To calculate the measure of merit that determines the split, the 
algorithm must maintain sufficient statistics for every possible split point. The meas-
ure that we use is the standard deviation reduction (SDR) which is also used in the 
batch algorithm M5. The formula for the SDR measure is given below: 
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where N is the number of examples which have passed through the corresponding leaf 
node of the model tree. The SDR measure has low computational complexity and the 
necessary statistics can be incrementally updated with every example from the stream. 
It becomes clear that we need to maintain the sums of y values (values of the pre-
dicted attribute) and squared y values, as well as the number of examples that have 
passed through that leaf node. The incremental algorithm doesn’t assume a termina-
tion condition. Therefore, the process of computing linear models in the leaves must 
be performed simultaneously, while building the tree. We propose training neural 
networks without hidden layers - perceptrons in the leaves of the regression tree. The 
perceptrons can be trained in an incremental manner with low time complexity, which 
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is linear with the dimensionality of the problem. The resulting algorithm incremen-
tally maintains a linear model tree, updating the tree with every new example from the 
data stream. It doesn’t need to store any examples and provides an up-to-date model 
at any instant. The processing time per example is dependent only on the dimension-
ality of the problem and the domain of the attributes and not on the number of previ-
ously seen examples. Therefore, the algorithm can mine very big data sets very  
efficiently. In the next subsections we describe the main properties of the algorithm. 

3.1   Numerical Attributes 

The ability to efficiently learn from numerical data is a very attractive property of a 
learning algorithm, especially if the problems that are being tackled are most naturally 
expressed by continuous numeric values. The common approach in the batch setting 
is to perform a preprocessing phase, typically consisted of discretizing the range of 
numerical attributes. Common data discretization techniques require an initial pass of 
the data prior to learning and this is not viable in the streaming setting. We address 
this problem in our system proposing a time efficient method for handling numerical 
attributes, which is based on a similar one proposed in [8].  

The incremental algorithm builds the tree following a top-down approach. Every 
node corresponds to a time window of training examples with a different size. After 
performing a split, the succeeding examples are passed down to the leaves of the tree, 
where we update the necessary statistics for determining the next split. Common 
techniques for choosing the best splitting threshold must perform sorting of attribute 
values, to check all split points between the distinct values. When mining data 
streams, sorting is an expensive operation and has to be done efficiently and incre-
mentally. The proposed method maintains a binary tree structure (Btree) located in the 
leaf, which tracks all the possible splitting points in the observed range of a numerical 
attribute. The Btree structure enables sorting values on the fly, as well as maintaining 
sufficient statistic for computing the measure of merit. It is an acyclic tree shaped 
graph consisted of nodes and branches. Except the leaf nodes, all the nodes in the 
structure have two branches leading to two other nodes. Each node of the structure 
holds a test of the form value ≤ key. The keys are unique values from the domain of 
the corresponding numerical attribute. For maintaining sufficient statistics, in each 
node of the Btree structure are stored two arrays consisted of three elements. The first 
array maintains counter of the number of instances that have passed through this node 
with values less than or equal to the key in the node, as well as sum of y values and 
sum of squared y values. The second array maintains these statistics for the instances 
that passed through it but with values greater than the key in the node. The Btree is 
incrementally updated with every new example that has reached that leaf of the model 
tree. If the example has new unseen value in the Btree, this value is inserted by trav-
ersing the tree, till the node with the smallest key bigger than the y value of the exam-
ple. The tree is traversed starting from the root node following the branches that  
correspond to the results of the tests in the nodes. While traversing the tree all the 
counters of the nodes on the way are updated. For each continuous attribute the sys-
tem maintains a separate Btree structure. When an example reaches a leaf in the 
model tree, all the binary tree structures maintained in this leaf are being updated. In-
sertion of a new value in the structure has time complexity on average O(log n) and 
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O(n) in the worst case, where n represents the number of unique values seen thus far 
in the leaf. When evaluating an attribute the whole tree must be traversed from left to 
right, to compute the SDR measure for each possible split point from a sorted se-
quence of the observed attribute values. This is easy to compute because all the nodes 
in the structure have the information about how many examples have passed that node 
with attribute values less or equal and greater than the key, as well as the sums of 
their y values. The way of traversing the Btree is by visiting first the left child node, 
second the parent node and last the right child node. The structure must be traversed 
only once per each attribute and the best splitting point can be computed on the fly. 
This operation has a time complexity of O(n), where n is the number of nodes or dis-
tinct values of the attribute. 

3.2   Splitting Criteria 

The splitting criteria is one of the most important aspects in the incremental induction 
of a model tree. We use the Chernoff bound to determine the point when there is 
enough statistical evidence accumulated in favor of a particular splitting attribute. The 
Chernoff  bound is independent from the distribution. It uses the sum of independent 
random variables X and gives a relative or absolute approximation of the deviation of 
X from its expectation µ. The original form of the bound although stronger, is not 
handy to compute. Instead, we use a corollary given in [10]. Considering the equa-
tions ε = βµ  and nµ µ= / , we obtain the following bound: 
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where n is the number of random variables. The Chernoff bound states that, with 
probability 1 - δ, the true mean of a random variable is at least µ − ε , where  
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Let G(⋅) be the heuristic evaluation measure, used to determine the best attribute to 
split (this measure can be any adequate measure of merit). Assuming G is to be 

maximized, and let xa be the attribute with the highest observed G( )ax after seeing n 

examples, xb the attribute with the second highest G( )bx and G = G( ) - G( ) 0a bx x∆ ≥  be 

the difference between their observed values. Given a user specified parameter δ, the 

Chernoff bound can be used to guarantee with probability 1 - δ that if G > ∆ ε  then at-
tribute xa is the correct choice. If after seeing n examples the observed difference be-
tween the best and the second-best attribute is greater than the error ε, the true mean 

difference will be trueG G - ∆ ≥ ∆ ε and from there trueG 0∆ ≥ . Therefore, the Chernoff 
bound guarantees with probability 1 - δ, that the attribute xa has a higher observed 
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value for the measure of goodness. The observed difference can be seen as an average 
over the examples seen at that leaf and is used as the expected average µ in (5). After 

determining the best attribute to split, the leaf is transformed into a decision node and 
the process is repeated for the new leaf nodes. The succeeding examples are passed 
down to the corresponding leaves and used to determine the best attributes to split at 
that level. Obviously, each splitting decision corresponds to a window frame of a cer-
tain number of examples that passed through that node while it was a leaf. If the dis-
tribution is stationary, with the guarantee of the Chernoff bound the tree built will be 
very similar to a batch one. 

3.3   Linear Models in the Tree Leaves 

In parallel with growing the tree is the process of building the linear models in the 
leaves of the model tree. This process is online and incremental. The base idea is to 
learn perceptrons in the leaves of the model tree using an online method for updating 
the weights. The trained perceptrons will represent the linear models with parameters 
equal to the values of the weights that correspond to the links with each of the attrib-
utes. We propose the incremental gradient descent method which enables us to update 
the weights of the perceptron links with every new example seen at the leaf. This 
method, based on the delta rule can converge even in the case when the examples that 
fall into the leaf are not linearly separable. The weights are initially set for the root 
node to random real valued numbers in the range [-1, 1]. When a new example comes 
we compute the output with the current weights and update each weight with the 
product of the difference between the output (o) and the real value (y), the normalized 
value of the corresponding attribute (xi) and the learning rate η. This is best repre-
sented with the following formula:  

( )i i iw w o y xη= + − . (4) 

The learning phase of the perceptrons is in parallel with the process of growing a 
node, and ends when the node splits. The obtained linear model in the splitting node is 
passed down to its children, avoiding the need to train the perceptrons in the children 
nodes form a scratch. The learning of parent’s perceptron continues in leaf nodes, in-
dependently and according to the examples that fall in the leaves. This can be seen as 
fine tuning of the linear model in the corresponding instance space. The learning rate 
can be kept constant or it can decrease with the number of examples seen during the 
process of learning. The perceptrons can handle only numerical attributes. The values 
of attributes should be normalized before the process of learning, so each of them will 
have the same influence during the process of training. This can be done incremen-
tally by maintaining the necessary statistics. Categorical variables should be trans-
formed into a set of artificial numerical variables before the process of learning.  

4   Evaluation 

In this section we present the results from the performed evaluation and sensitivity 
analysis of the FIMT learner. The evaluation was designed to cover several aspects of 
FIMT’s general performances. We have performed comparison of FIMT with the 
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equivalent incremental regression tree algorithm (FIRT – as prediction we use the 
mean of the examples that fall to the corresponding leaf), its batch version (BRT – 
forces splitting as long as the nodes are not “pure”) and the Friedman’s algorithm 
CART [12] over the accuracy, the model size, the memory allocation and the training 
time. As tools we have used bias-variance decomposition of the error and learning 
curves. We have also analyzed their sensitivity with respect to noise and the order of 
examples. 

The experiments were performed using six well known artificial datasets: We have 
used the Fried dataset used by Friedman in [11]. It contains 10 continuous predictor 
attributes with independent values uniformly distributed in the interval [0, 1]. The 
Cart dataset proposed by Breiman et al. in [12] with 10 attributes all of them discrete. 
The 3DSin dataset used by A. Dobra and J. Gehrke in [13] and the 2DTest dataset 
used by S. Schaal and C. Atkeson [14], both containing two continuous attributes. 
Losc and Lexp datasets proposed by A. Karalic in [4] which contain five predictor at-
tributes, one discrete and four continuous. FIMT is designed for mining huge, possi-
bly unbounded datasets at high speeds. A system like FIMT is not very useful for 
small datasets. The lack of real world datasets big enough to test FIMT’s performance 
has restricted us to only three datasets from the UCI Machine Learning Repository 
[15]. In our evaluation we have used the California Housing dataset, Census 8L, and 
Census 16H datasets. For all the experiments, we used initial parameter values of δ = 
1×10-6, τ = 0.001 and nmin = 300. Algorithms were run on a AMD/2GHz. All of the 
results are averaged over 10 runs. 

Figure 1 shows the accuracy of the learners averaged over 10 runs on the Fried 
dataset, which is the most complex one. Due to the memory and time constraints, the 
maximum number of examples for the batch learners was limited to 100k examples. 
The learning curves show that BRT has a clear advantage for the first 100k examples. 
CART is outperformed by all of the other learners. FIMT obtains the same accuracy 
with 340k examples and continues to improve its performance. The advantage of the 
batch learner can be explained due to the fact that the incremental algorithm uses each 
example only once, while the batch algorithm reuses the same example at multiple 
levels of the tree while making splitting decisions. The curves also show the apparent 
advantage in accuracy of the model tree over the regression tree, whose prediction 
strategy is the average of y values of the examples that have passed through that leaf. 
For mining 100k examples of the Fried dataset, BRT dynamically allocates around 
170MB of memory, CART requires ~75MB, while FIRT/FIMT only ~20MB. On all 
of the artificial datasets FIMT consistently outperformed FIRT. More details are pre-
sented in Table 1. ASE stands for average squared error, STD stands for standard de-
viation and RMSE is abbreviation of relative mean squared error. 

Figure 1 also shows the number of nodes of the trees induced by the learners, aver-
aged over 10 runs on the Fried dataset. FIRT and FIMT generate exactly the same tree 
model except for the linear models in the leaves. Notice that the incremental learners 
when compared to their batch equivalent generate trees with substantially smaller 
number of nodes, which are able to achieve better accuracy given enough big datasets. 
The time required to learn from 100k examples of the Fried dataset for the batch 
learner (BRT) is around 310 seconds, for CART around 350 seconds, while for the 
incremental learners around 17 seconds. 
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Fig. 1. Relative error and model size of FIMT, FIRT, BRT and CART as function of the num-
ber of examples on the Fried dataset 

Table 1. Averaged results over ten runs for FIRT and FIMT on the artificial data sets for 
training sets of 1000k and test sets of 300k examples. The best results are bolded. 

 FIRT FIMT 
 ASE STD RMSE Bias Var. ASE STD RMSE Bias Var. 

3DSin 0.02817 0.00009 0.0115 0.0126 0.0165 0.02247 0.00008 0.0091 0.01116 0.0113 
Cart 1.00076 0.00183 0.0519 0.99996 0.0006 1.00296 0.00259 0.0518 0.99938 0.0035 
Fried 3.34584 0.00669 0.1353 2.19333 1.152 2.28359 0.00756 0.0919 1.81086 0.4726 
2DTest 1.0071 0.00261 0.8835 1.00282 0.004 1.00658 0.00260 0.8831 1.00296 0.0035 
Lexp 0.17841 0.00094 0.0295 0.08388 0.0945 0.00741 0.00006 0.0012 0.00384 0.0036 
Losc 0.17776 0.00061 0.0284 0.16021 0.0175 0.14848 0.00057 0.0238 0.13906 0.0093 

Table 2. Comparison of learners when given the same number of examples (100k/30k) 

 BRT FIRT FIMT CART 
 RMSE Nodes Mem. RMSE Nodes Mem. RMSE Nodes Mem. RMSE Nodes Mem. 
Fried 0.117 55243.8 165.38 0.194 404.6 21.47 0.138 377 20.09 0.399 17 75 
Lexp 0.006 54682.4 108.61 0.045 429.4 10.28 0.002 434.6 10.05 0.146 26.8 45 
Losc 0.0247 54662.8 108.6 0.028 471.8 10.54 0.0244 472.2 10.55 0.057 5 45 
Cart 0.063 22780.2 83.1 0.052 107 0.2 0.062 107.4 0.21 0.120 23 55 
2DTest 1.384 51215.4 73.53 0.89 87.8 4.43 0.889 87.6 4.3 0.932 5 25 
3DSin 0.0002 53990.2 72.87 0.011 437 4.89 0.01 424.4 4.77 0.121 34.6 25 

Further, we have designed the evaluation considering three important aspect: the 
learning capacity, ability of learning with constrained computational resources and the 
ability of fast learning. To evaluate the learning capacity we have compared all the 
algorithms over the same sizes of training and testing datasets. We use training 
datasets of size 100k and testing datasets of size 30k. The results of the comparison 
are presented in Table 2. From the results we can see that the incremental learners, 
especially FIMT is competitive with its batch equivalent, and for most of the 
problems obtains better accuracy. CART is outperformed for all of the problems. 
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Table 3. Comparison FIMT and CART on the artifical datasets when given the same 
computational resources in terms of RAM. The best results are bolded. 

 FIMT CART 
Dataset ASE STD RMSE Nodes Dynamic Mem. Ex. RMSE Nodes RAM 
3DSin 0.0415 0.0002 0.0168 253.4 18.99 400k 0.12092 34.6 50 
Cart 1.00296 0.0026 0.0518 107 0.392 ~/100k 0.12022 23 80 
Fried 3.4388 0.0187 0.1385 496.8 39.593 400k 0.39879 17 100 
2DTest 1.00598 0.0032 0.8833 109.2 20.382 600k 0.93212 5 50 
Lexp 0.0219 0.0004 0.0036 236.2 29.505 300k 0.14545 26.8 70 
Losc 0.1652 0.001 0.0264 139.2 31.042 400k 0.05683 5 70 

 
The second aspect of our evaluation concerns the ability of learning with con-

strained computational resources. For the CART algorithm we use datasets of sizes 
100k/30k (train/test). We have measured the memory required for CART and con-
strained the incremental algorithm to the same amount of RAM. The number of ex-
amples that FIMT is able to mine for the same computational resources, as well as the 
average error, the standard deviation, the relative error, the model sizes and the dy-
namically allocated memory required for the necessary statistics and the tree structure 
(in MB) are given in Table 3. We can see that FIMT has significantly better results 
than CART. This can be due to the fact that FIMT uses its advantage to learn from the 
quantities of examples that are beyond the processing ability of the conventional 
batch learners like CART. For the Cart dataset the number of examples that FIMT can 
mine is very big (~30000k) but the accuracy remains the same as for 100k examples.  

In order to study the capabilities of fast learning, we compared the learners with 
constrained time of learning. The time limit corresponds to the time required for the 
batch learner to mine 100k examples. The incremental algorithms are not just com-
petitive with the batch equivalent, but for most of the problems they obtain substan-
tially lower error. FIMT and FIRT, are able to mine from 4 to 8 times more examples 
that the batch ones in the same time, and therefore easily achieve better accuracy.  

We performed a study of the sensitivity of learners on the noise in the data. The 
test set was fixed on 300k examples with 10% of noise. The training set was fixed on 
1000k examples and the level of noise was systematically increased from 0 to 70%. 
We measure the accuracy and the model size. From the results we conclude that the 
incremental learners are more robust to the noise, responding with smaller increase of 
the relative error. The size of the tree induced by the incremental learners continu-
ously decreases with the increase of the noise in the training data. This was expected, 
because the noise increases the uncertainty in the concept. The incremental learners 
delay their decisions until more evidence has been accumulated. 

Incremental algorithms are known to be very dependent on the order of the exam-
ples. We have analyzed the effect of different order of examples over the performance 
of incremental learners on several artificial datasets. In our experiments the test and 
training datasets are set to 300k and 1000k correspondingly. We shuffled the training 
set ten times and measured the error, the learning time, the model size as well as the 
argument chosen at the root node of the learned tree. The results show that the vari-
ance of the relative error is of the order from 10-6 to 10-10. The learning time is not af-
fected as well as the model size. The attribute at the root remained the same in all  
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experiments, except for the 3DSin dataset where the root attribute was Att1 or Att2 
which have same information value with respect to the predicted attribute.   

Very useful analytical tool is the bias-variance decomposition of the error [16]. 
The bias component of the error is an indication of the intrinsic capability of the 
method to model the phenomenon under study and is independent of the training set. 
The variance is independent of the true value of the predicted variable and measures 
the variability in the predictions given different training sets. Experiments were per-
formed for all the learners with training sets of fixed size 100k and test sets of fixed 
size 60k. Different set of experiments was also performed only for the incremental 
learners with training sets of size 1000k and test sets of size 300k. The experimental 
methodology is the following: We generate ten independent training sets and log the 
predictions of the corresponding models over the same test set. Those predictions are 
then used to compute the bias and the variance using the derived formula for squared 
loss in [17]. Results show that the incremental learners exhibit significantly lower 
variance than the batch learner, while the bias component of the error improves more 
in time, given bigger datasets. This suggests that the splitting decisions are stable and 
lead to a more reliable model which is not dependent on the selection of the training 
examples.  

We have done some comparison of the learners on three real datasets from the UCI 
repository. We use the Census8L, Census16H and California housing datasets. The 
training sets contain two thirds of the examples. The rest was left for the test set. The 
relative errors on the Census8L dataset are: 18% for BRT, 46% for FIRT and 72% for 
FIMT. For Census16H dataset are: 62%, 61% and 103%, and for California housing 
are: 30%, 38% and 56% for BRT, FIRT and FIMT accordingly. The results show that 
FIRT is competitive with BRT considering the small number of examples, but FIMT 
is not useful for small dataset. This is due to the fact that training of the perceptrons 
requires more examples to be seen at the leaf. Therefore, for small datasets the aver-
age value is better prediction strategy than using the linear models.  

5   Conclusion 

In this paper we propose FIMT, a fast and incremental algorithm for learning regres-
sion trees from data streams. The algorithm is able to learn in a very small time per 
example and the only memory it requires is for storing sufficient statistics at tree 
leaves. The splitting criteria uses Chernoff bound to guarantee stable decisions. Tree 
leaves are equipped with linear-models trained online. Empirical studies show the ad-
vantage, in terms of accuracy, of using linear models in the tree leaves. Moreover, this 
feature improves accuracy at any-time. The incremental algorithm is competitive with 
its batch equivalent even for medium sized datasets and exhibits lower values for the 
variance component of the error. The sensitivity analysis shows that the incremental 
learners are more robust to noise. The quality of the produced models is not depend-
ent on the order of examples and suggests stable decisions. In this work we assumed 
stationary distributions. Improving the algorithm towards non-stationary distributions 
and dynamic environments is left for future work. 
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Abstract. We consider learning tasks where multiple target variables
need to be predicted. Two approaches have been used in this setting:
(a) build a separate single-target model for each target variable, and (b)
build a multi-target model that predicts all targets simultaneously; the
latter may exploit potential dependencies among the targets. For a given
target, either (a) or (b) can yield the most accurate model. This shows
that exploiting information available in other targets may be beneficial
as well as detrimental to accuracy. This raises the question whether it is
possible to find, for a given target (we call this the main target), the best
subset of the other targets (the support targets) that, when combined
with the main target in a multi-target model, results in the most accurate
model for the main target. We propose Empirical Asymmetric Selective
Transfer (EAST), a generally applicable algorithm that approximates
such a subset. Applied to decision trees, EAST outperforms single-target
decision trees, multi-target decision trees, and multi-target decision trees
with target clustering.

1 Introduction

There has been increasing interest recently in simultaneous prediction of multiple
variables, also known as multi-target prediction or multi-objective prediction. In
typical classification or regression problems, there is a single target variable that
needs to be predicted as accurately as possible. In multi-target prediction, on
the other hand, the input is associated with a vector of target variables, and all
of them need to be predicted as accurately as possible.

Multi-target prediction is encountered for instance in ecological modelling
where the domain expert is interested in (simultaneously) predicting the fre-
quencies of different organisms in river water [1] or agricultural soil [2]. It can
also be applied in multi-label classification tasks [3], where a set of labels is to
be predicted for each instance instead of a single label; in prediction tasks with
a structured output space [4], such as hierarchical multi-label classification [5],
where the output is structured as a taxonomy of labels (e.g., newsgroups); and in
multi-task or transfer learning, where knowledge gained from learning one task
is reused to better learn related tasks [6].
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It has been shown that multi-target models can be more accurate than pre-
dicting each target individually with a separate single-target model [6]. This is a
consequence of the fact that when the targets are related (e.g., if they represent
frequently co-occurring organisms in the ecological modelling applications men-
tioned above), they can carry information about each other; the single-target
approach is unable to exploit that information, while multi-target models nat-
urally exploit it. This effect is known as inductive transfer: the information a
target carries about the other targets is transferred to those other targets. Note
the connection with collective classification [7]: the latter exploits dependencies
among targets of different instances, while multi-target models exploit depen-
dencies among the multiple targets of the same instance.

Multi-target models do not, however, always lead to more accurate prediction.
As we will show, for a given target variable, the variable’s single-target model
may be more accurate than the multi-target model. That is, inductive transfer
from other variables can be beneficial, but it may also be detrimental to accuracy.
Let us focus on one particular target and call this the main target. The subset
of targets that, when combined with the main target in a multi-target model,
results in the most accurate model for the main target, may be non-trivial, i.e.,
different from the empty set and from the set of all targets. We call this set
the support set for the main target. This paper investigates how we can best
approximate this set. Note that the two natural extremes of this approach are the
single-target model (the support set is empty) and the full multi-target model
(the support set includes all targets).

Based on the above observation, we propose Empirical Asymmetric Selective
Transfer (EAST), a greedy algorithm that approximates the support set for a
given main target. EAST has the following advantages over other approaches
that try to exploit transfer selectively [8,9,10,11]: (a) EAST does not assume
transfer to be symmetric (in fact, we show that transfer can be asymmetric),
(b) EAST estimates transfer empirically and does not rely on heuristic approx-
imations (we show that heuristics may poorly approximate transfer), (c) EAST
does not make explicit assumptions about the distribution of the different target
variables, and (d) EAST is a general method in the sense that it can be combined
with any multi-target learner (other methods are often tied to a particular type
of models, such as neural networks).

EAST is the main contribution of this paper. A second contribution is that
we show that exploiting transfer selectively is useful in the context of decision
trees; previous work focused on other model types such as neural networks [9]
and k-nearest neighbor [8]. Decision trees have the well-known advantage over
these methods that they are easy to interpret.

The rest of this paper is organized as follows. Sec. 2 introduces single- and
multi-target prediction formally and defines our problem setting. Sec. 3 dis-
cusses known methods for multi-target prediction and inductive transfer. Sec. 4
describes multi-target decision trees, and shows that their so-called transfer
matrix is asymmetric. This motivates EAST, which we introduce in
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Sec. 5. Sec. 6 presents experiments with EAST, and Sec. 7 states the main
conclusions.

2 Single/Multi-target Prediction and Problem Setting

Assume we have a dataset S containing couples (x,y) with x ∈ X the input
vector and y ∈ Y = Y1× · · ·×Yn the target vector. Denote with yi ∈ Yi the i’th
component of y.

A single-target learner learns from a dataset S = {(x, yi)}, with yi ∈ Yi

a scalar variable, a function fi : X → Yi such that
∑

(x,yi)∈S Li(fi(x), yi) is
minimized, with Li some loss function over Yi.

A multi-target learner learns from a dataset S = {(x,y)}, with y ∈ Y an
n-dimensional vector, a function F : X → Y such that

∑
(x,y)∈S L(F (x),y)

is minimized, with L a loss function over Y . Assume that L is monotonically
increasing in each of the Li (i.e., whenever one Li increases while the other L(·)
remain constant, L increases too). For example, L(y,y′) =

∑
i Li(yi, y

′
i).

It has been shown that by using multi-target learners, better predictive
performance for the targets, on average, can be obtained [6]. That is, for
any (x,y) drawn randomly from the population, on average, L(F (x),y) <
L([f1(x), . . . , fn(x)] ,y).

Under the monotonicity assumption mentioned above, obtaining better pre-
dictive performance on average implies that there must be individual targets for
which the predictive performance, as measured on this single target, must im-
prove. That is, there must be at least one i for which Li(Fi(x), yi) < Li(fi(x), yi),
with Fi(x) the i’th component of F (x). This observation leads to the question
whether single-target models could be improved by following the multi-target
approach. That is: even when there is only one single target that we want to
predict, we may be able to build a better model for predicting that target if we
can exploit the information present in other, related, variables.

Thus, the problem setting becomes as follows. We are given a training set
S = {(x,y)}, and are interested in predicting yn from x. The variables yi, i �= n
need not be predicted, and will not be available at prediction time, but we
can use them during the learning phase. We call this setting the single-target
setting with support targets: one single target yn (the main target) needs to be
predicted, but a number of additional support targets yi, i �= n are available at
induction time, and can be used to improve the model for yn.

Note the following important point: while the support targets are used during
learning, they are not assumed to be available during the prediction phase. If
they were, then an alternative to the method proposed here would be to learn a
model that also uses the support targets as inputs (e.g., in the case of decision
tree learning, to learn a tree that is allowed to test these attributes). It is quite
likely that that would lead to better prediction. The model that we will try to
learn here, is one that will make predictions without having that information; we
use the support targets to learn a model that maps x onto a target attribute more
accurately, even though the model itself has no access to the support targets.
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3 Related Work

We first discuss known algorithms for multi-target prediction. After that, we turn
to methods that selectively exploit transfer by partitioning the target variables.
Finally, we discuss methods that explicitly assume transfer to be asymmetric.

Probably the most influential work on multi-target prediction is that by Caru-
ana [6]. He proposes a neural network based approach where the different target
variables are outputs of one single network. Considering the network as con-
taining n different predictive models (one for each output), one could say that
these models share the connection weights between the input layer and the hid-
den layer, but the weights between the hidden and output layers are particular
to each individual output. In this way, the network finds a balance between
modeling the shared properties of the different targets and modeling their par-
ticularities.

Besides neural networks, many other predictive models have been extended
to multi-target prediction as well. This includes nearest neighbor methods [6,8],
kernel methods [12], Bayesian approaches [13], logistic regression [14], Gaussian
processes [15], and decision trees [16].

Thrun & O’Sullivan [8] explicitly consider the fact that among the target
variables, some may be related while others may be unrelated. Hence, better
predictive performance may be obtained if multi-target models are built that
only include those variables that are indeed related. To this aim, they first clus-
ter the target variables, and then learn a separate multi-target model for each
cluster. The variables are clustered based on an empirical measure of relatedness.
More recently, also Bakker & Heskes [13], Xue et al. [14], and Evgeniou et al.
[12] have proposed methods that are based on clustering targets.

As we will show with an example, transfer may be asymmetric and methods
that cluster targets may therefore be suboptimal. The following two approaches
assume transfer to be asymmetric and also consider the single-target prediction
with support targets setting. Nevertheless, they don’t measure transfer empiri-
cally. They are also not directly applicable to decision trees.

Silver & Mercer [9] build on the work of Caruana, but use a different learning
speed (a parameter of the back-propagation algorithm) for each target in the
neural network. They set the learning speed of the support targets based on
their relatedness to the main target. In later work, they compare a number of
relatedness measures, such as correlation and mutual information, to control the
learning speeds [17].

Kaski & Peltonen [11] propose a probabilistic model for each support target
that is a mixture of the main target’s model and a target specific model. They
set the parameters of these mixture models to minimize the conditional log likeli-
hood summed over all targets. The idea is that the support target specific models
“explain away” the irrelevant data, and that the relevant data available for the
support targets helps improve the model for the main target. The approach is
validated with logistic regression models as base models.
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Fig. 1. A multi-target regression tree together with its mapping from the input to the
target space. Multi-target regression trees work well if the training data maps hyper-
rectangles in the input space to compact clusters in the target space.

4 Single-Target Prediction with Multi-target Trees

In this section, we briefly describe multi-target decision trees; we will use these
as multi-target models in our experiments. Then, we study inductive transfer
empirically for decision trees by constructing a so-called transfer matrix.

4.1 Multi-target Decision Trees

Most descriptions of decision tree learning assume a scalar target, which may be
nominal (classification) or numerical (regression). Blockeel et al. [16] argued that
decision tree learning can easily be extended towards the case of multi-target pre-
diction, by extending the notion of class entropy or variance towards the multi-
dimensional case. They define the variance of a set as the mean squared distance
between any element of the set and the centroid of the set. Depending on the
definition of distance, which could be Euclidean distance in a multi-dimensional
target space, a decision tree will be built that gives accurate predictions for
multiple target variables (Fig. 1 shows an example).

Similar to other multi-target models, it has been shown that multi-target trees
can be more accurate than single-target trees. This holds for both multi-label
classification trees [5] and for multi-objective regression trees [18].

4.2 The Transfer Matrix

To gain insight in the effect of applying multi-target models to single-target pre-
diction, we construct a transfer matrix [8] C = (ci,j), where ci,j is the expected
gain in predictive performance for target yi that the two-target model with tar-
gets yi and yj yields over the single-target model for yi. In other words, ci,j

indicates if inductive transfer from yj to yi is useful. We call ci,j the transfer
from yj to yi.

Table 1 shows the transfer matrix for one of the datasets that we will use in
the experimental evaluation. The multi- and single-target models on which the
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Table 1. (a) Transfer matrix for the Soil Quality 1, Collembola groups dataset (a
subset of S2, see experimental setup). Cases where transfer is asymmetric are in italic.
(b) Correlation matrix for this dataset.

(a)
j \ i 1 2 3 4 5

1 0 0.01 0.04 0.13 0
2 0 0 0.06 0.13 0
3 0.07 0.01 0 0.13 0
4 0.03 0 -0.02 0 -0.01
5 0.1 0.03 0.31 0.18 0

(b)
j \ i 1 2 3 4 5

1 1 0.03 0.12 0.05 0.07
2 0.03 1 0.08 0.27 0.45
3 0.12 0.08 1 0.31 0.14
4 0.05 0.27 0.31 1 0.19
5 0.07 0.45 0.14 0.19 1

matrix is based are regression trees. The matrix elements are the relative differ-
ences in 10-fold cross-validated Pearson correlation (a performance measure that
is often used in regression problems) between the multi- and single-target model
for yi, averaged over 5 runs with different random folds; each row corresponds
to a different support target yj in the two-target model.

From the transfer matrix, we see that transfer is an asymmetric quantity: it
is possible that yi can be predicted more accurately if yj is included as support
target (ci,j > 0), whereas the prediction for yj actually deteriorates when yi is
included (cj,i < 0).

While empirically measuring transfer as defined above is the most direct way
of deciding which support target to use for predicting a given target, two im-
portant approximations to this approach have been used in previous work: (a)
converting transfer into a symmetric quantity [8], and (b) using other measures,
such as correlation, to somehow approximate transfer [17]. The advantage of such
approximations is that they reduce the computational cost of the approach. For
example, by combining (a) and (b), one could use the pairwise linear correlation
between the targets to cluster the targets and then build a multi-target model
for each cluster in the partition.

The disadvantage of (a) is that, because transfer is really asymmetric, replac-
ing it by a symmetric approximation will result in suboptimal models for certain
targets. Consider again Table 1. Clustering y3 and y4 together will result in a
suboptimal model for y3, while putting y3 and y4 in different multi-target models
may result in a suboptimal model for y4.

The disadvantage of (b) is that correlation is often not a good approximation
for transfer. Table 1 shows the targets’ correlation matrix. y2 and y5 have the high-
est correlation. Nevertheless, the transfer from y2 to y5 is zero and that from y5

to y2 is small. One reason is that transfer does not only depend on the values of
the target variables. It also depends on other factors, such as the mapping that
the data represents between input and output. Measures that only depend on the
targets may therefore poorly approximate transfer. Fig. 1 illustrates this: the cor-
relation between the targets is zero, yet both targets can be predicted accurately
with the same tree structure. Therefore, we expect that data for both targets will
be beneficial to finding this structure, and that c1,2 and c2,1 are positive.

These two disadvantages are alleviated by our approach, which we discuss next.
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Algorithm 1. Empirical Asymmetric Selective Transfer (EAST).
1: input: dataset S, main target t = yn, candidate support targets Ts = {yi | i �= n}.
2: T (0) := {t}
3: L(0) := cross-validate(T (0), Ln, S)
4: for i := 1 to n − 1
5: L(i) := ∞
6: for each ts ∈ (Ts − T (i−1))
7: L := cross-validate(T (i−1) ∪ {ts}, Ln, S)
8: if L < L(i)

9: L(i) := L
10: T (i) = T (i−1) ∪ {ts}
11: i∗ := argmini∈{0,...,(n−1)}L(i)

12: return induce(T (i∗), S)

5 Empirical Asymmetric Selective Transfer

Since addition of extra support targets may increase the predictive accuracy
for the main target, but is not guaranteed to do so, and moreover some target
variables may help while others are detrimental, we can consider the following
procedure: add extra target variables one by one, always selecting that target
variable that results in the best model.

How can we select the “best” target to add to our current support set? As
explained before, any measure that is symmetric or takes only relations among
the target values into account will be suboptimal. Therefore, we directly measure
the increase in predictive performance that a candidate support target yields
using (internal) cross-validation. This takes into account all possible effects of
including a certain support target.

Our “Empirical Asymmetric Selective Transfer (EAST)” procedure is de-
scribed in Algorithm 1. It essentially implements the approach outlined above.
The internal loop finds the next best candidate support target that can be added
to the multi-target model. To do so, it calls the procedure cross-validate(T , Ln,
S), which computes the 10-fold cross-validated loss Ln with regard to the main
target yn of a multi-target model with targets T constructed from S. The outer
loop repeats this process until the support set is equal to the set of all targets.
In the end, the algorithm returns the best support set found in this way.

The computational cost of EAST compares as follows to the execution time
required for building a single-target decision tree (TST). Iteration i of EAST’s
outer loop costs 9 ·TST · (i+1) · (n− i), because it tries (n− i) candidate support
targets and cross-validates for each candidate a (i + 1)-target tree. Building one
single (i + 1)-target tree costs ≈ TST · (i + 1); cross-validating it costs 9 times
more (10 folds, each with a training set of 0.9 · |S|). (n− 1) iterations of EAST
therefore cost 9 · TST

∑(n−1)
i=1 (i + 1)(n − i), i.e., EAST is a factor O(n3) slower

than building a single-target decision tree.
In our experiments, EAST’s runtime proved to be acceptable because TST was

relatively small. For example, for a dataset with 9 targets, EAST took on average
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25 minutes; a factor 290 slower than TST. For large datasets, an alternative is to
replace the cross-validation in EAST’s internal loop by a single train/test split.
This modification would make the algorithm about a factor 10 faster.

6 Experimental Evaluation

The aim of our experiments is to test to which extent EAST, for a given main
target, succeeds in finding a good set of support targets. We do this by comparing
EAST to two common baseline models: a single-target model for the main target
(ST) and a multi-target model that includes all targets (MT). We also compare
to the TC algorithm by Thrun & O’Sullivan [8], which we briefly describe next.

6.1 The TC Algorithm

We compare EAST to the task (target) clustering algorithm (TC) by Thrun &
O’Sullivan [8], because clustering of targets is a straightforward and frequently
used approach to exploit transfer selectively; TC is also quite general and can
easily be used with multi-target decision trees as base models.

TC exhaustively searches for the clustering C1, . . . , CK of targets that maxi-
mizes 1

n

∑K
k=1

∑
yi∈Ck

1
|Ck|

∑
yj∈Ck

ci,j , with ci,j the transfer from yj to yi. Next,
it builds a multi-target model for each cluster Ck. As in EAST, transfer is es-
timated empirically using cross-validation (but TC only estimates the pairwise
transfer between two targets, while EAST compares candidate support sets of
arbitrary size).

The number of possible partitions grows exponentially with the number of
targets. As a result, TC quickly becomes computationally infeasible, even for
moderate numbers of targets. For example, computing all partitions for 9 targets
took 4.5 minutes; for the 39 targets in dataset S3 (Table 2) this would take about
2 years.

An alternative and faster approach would be to use an approximate method
to compute the clustering, such as hierarchical agglomerative clustering. We
chose not to pursue this because this was also not done by Thrun & O’Sullivan
(they consider a relatively small number of tasks) [8]. An exact method is also
a stronger baseline to compare our approach to.

6.2 Experimental Procedure

The datasets that we use are listed, together with their properties, in Table 2.
Many datasets are of ecological nature. We omit the description of each dataset;
the interested reader can find details in Ženko [19]. Each dataset represents a
multi-target regression or classification task, and the number of targets varies
from 2 to 39.

EAST has been implemented in the decision tree induction system Clus, which
is available as open source software from http://www.cs.kuleuven.be/∼dtai
/clus. Clus also implements single- and multi-target decision trees, so all results

http://www.cs.kuleuven.be/~dtai
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Table 2. Dataset properties. Datasets S1 to S6 are regression tasks, the remaining
ones are classification tasks. N is the number of examples, |x| the number of input
variables, and |y| is the number of target variables.

(a)
Dataset N |x| |y|

S1 Sigmea Real 817 4 2

Soil Quality 1 1944 139
S2 Acari/Coll. groups ” ” 9
S3 Coll. species ” ” 39

S4 Soil Quality 2 393 48 3

Water quality 1060
S5 Plants/Animals ” 16 14
S6 Chemical ” 836 16

(b)
Dataset N |x| |y|

S7 Mediana 7953 78 5

S8 Bridges 104 7 5

S9 Monks 432 6 3

S10 Thyroid 9172 29 7

that we present next are obtained with the same system and parameter settings.
All parameters are set to their default values. To avoid overfitting we prune the
trees using Cart validation set based pruning, i.e., we use 70% training data for
tree building and 30% for pruning (as suggested by Torgo [20]). We normalize
each numerical target to zero mean and unit variance.

We compare for each dataset and target variable, the predictive performance
of a traditional single-target tree (ST), a tree constructed by EAST with all other
targets as candidate support targets, a multi-target tree including all targets
(MT), and a multi-target tree from the clustering created by TC for datasets
where this is computationally feasible. We estimate predictive performance as the
10-fold cross-validated misclassification error (for classification tasks) or Pearson
correlation (for regression tasks). Correlation is often used as evaluation measure
in ecological modelling. To compare EAST to ST, MT, and TC we count the
number of targets on which it performs better (wins) and the number on which
it performs worse (losses) and apply the sign test. Besides strict wins and losses,
we also report significant wins and losses; to this end we use the corrected paired
t-test [21] with significance level 0.05.

6.3 Results and Discussion

Table 3 gives an overview of the results. EAST outperforms the three other
algorithms. The sign test applied to the wins/losses counts shows that EAST is
significantly better than ST (p = 0.0003) and TC (p = 0.029). At the 5% level,
it is just not significantly better than MT (p = 0.057). This result is mainly due
to the losses on dataset S3. If we would disregard this dataset, then EAST is
clearly better than MT (p = 0.0003).

We conjecture that the losses of EAST compared to MT on S3 are the result of
a form of overfitting due to the many targets in this dataset and high variance of
the performance estimates. EAST loses to MT when its internal cross-validation
incorrectly estimates the performance of a subset that does not include all other
targets higher than that of the subset corresponding to MT. The chance that
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Table 3. Pairwise comparison of methods. For each pair A/B, the number of targets
are given that represent (significant) wins and losses for A when compared to B. Entries
marked n/a were computationally infeasible (see Section 6.1).

Dataset EAST/ST EAST/MT EAST/TC

#win #loss #win #loss #win #loss

S1 Sigmea Real 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0)
S2 SQ1 - Acari/Coll. groups 7 (0) 2 (0) 3 (1) 6 (0) 8 (0) 1 (0)
S3 SQ2 - Coll. species 25 (4) 8 (0) 15 (0) 24 (1) n/a
S4 Soil Quality 2 2 (0) 1 (0) 2 (0) 1 (0) 1 (0) 2 (0)
S5 WQ - Plants/Animals 8 (1) 6 (0) 9 (1) 5 (0) n/a
S6 WQ - Chemical 11 (3) 5 (0) 14 (3) 2 (0) n/a
S7 Mediana 3 (2) 2 (0) 4 (0) 1 (0) 4 (0) 1 (0)
S8 Bridges 2 (2) 3 (0) 5 (0) 0 (0) 4 (0) 1 (0)
S9 Monks 1 (0) 0 (0) 2 (1) 0 (0) 0 (0) 1 (0)
S10 Thyroid 5 (2) 2 (0) 6 (1) 1 (1) 5 (0) 2 (0)

Total 65 (14) 29 (0) 60 (7) 40 (2) 22 (0) 9 (0)

Table 4. Cross-validated Pearson correlation for EAST, ST, and MT for each target
t of dataset S6 WQ - Chemical. •, ◦ denote a statistically significant improvement or
degradation of EAST when compared to ST or MT. �,� denote a statistically significant
improvement or degradation of MT when compared to ST.

t EAST ST MT t EAST ST MT

1 0.50±0.07 0.51±0.07 0.11±0.17•� 9 0.26±0.15 0.22±0.19 0.06±0.16�
2 0.34±0.09 0.36±0.09 0.22±0.12•� 10 0.44±0.22 0.11±0.21• 0.34±0.20�
3 0.42±0.10 0.38±0.14 0.31±0.16• 11 0.35±0.18 0.11±0.20• 0.32±0.12�
4 0.41±0.10 0.39±0.06 0.38±0.16 12 0.49±0.12 0.51±0.07 0.42±0.18
5 0.32±0.13 0.32±0.15 0.37±0.16 13 0.26±0.14 0.20±0.16 0.20±0.11
6 0.37±0.16 0.16±0.15• 0.24±0.15 14 0.39±0.23 0.46±0.22 0.43±0.16
7 0.38±0.14 0.42±0.09 0.26±0.17 � 15 0.48±0.21 0.38±0.24 0.44±0.16
8 0.27±0.13 0.19±0.20 0.26±0.16 16 0.56±0.22 0.51±0.16 0.52±0.16

this happens depends on the number of targets (more targets implies more can-
didate subsets, which in turn implies a higher chance that at least one of these
is incorrectly estimated as better than MT) and on the variance of the perfor-
mance estimates obtained in EAST’s internal cross-validation. While this kind
of overfitting is unavoidable (it can happen in general when performing model
selection), we expect it to remain small and expect few significant losses. This
is confirmed by the results in Table 3.

Table 4 shows detailed results for dataset S6. First consider the comparison
ST versus MT. ST works best on 8 targets and MT works best on 7, so neither
is a clear winner. This illustrates again the advantage of selective transfer. For
some targets, using all other targets as support targets may be best, while for
others using no support targets may be best. EAST successfully discovers this
and may find a non-trivial subset that performs even better. This is confirmed
by the results: EAST outperforms the best of ST and MT on 10 targets.
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7 Conclusions and Future Work

This paper addresses the single-target with support targets prediction task,
where the goal is to build a model for the main target (or one model for each
target in case of multiple targets), and where a number of candidate support tar-
gets are available (only) at model induction time, which may carry information
about the main target. The paper’s chief contribution is Empirical Asymmetric
Selective Transfer (EAST), an algorithm that approximates the subset of sup-
port targets that, when predicted together with the main target in a multi-target
model, maximally improves predictive performance of the main target.

Experiments show that EAST, on top of a multi-target decision tree learner,
outperforms single-target decision trees, multi-target decision trees, and multi-
target decision trees with target clustering.

We would like to address a few questions in future work. First, we will analyze
in more depth to which degree the subset selected by EAST approximates the
optimal support set. This analysis will include experiments to gain more insight
in the overfitting behavior of EAST. Second, it is not clear if different multi-
target learners can exploit the additional information available in other targets
equally well. Therefore, we will test EAST in combination with different base-
learners. This will give us more insight in the behavior of selective inductive
transfer with those base-learners.
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hierarchical multilabel classification: A case study in functional genomics. In: 10th
European Conf. on Principles and Practice of Knowledge Discovery in Databases,
pp. 18–29 (2006)

http://ludit.kuleuven.be/hpc


Empirical Asymmetric Selective Transfer in Multi-objective Decision Trees 75

6. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)
7. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational

classification. In: 10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining, pp. 593–598 (2004)

8. Thrun, S., O’Sullivan, J.: Discovering structure in multiple learning tasks: The TC
algorithm. In: 13th Int’l Conf. on Machine Learning, pp. 489–497 (1996)

9. Silver, D., Mercer, R.: The parallel transfer of task knowledge using dynamic learn-
ing rates based on a measure of relatedness. Connect. Sci. 8(2), 277–294 (1996)

10. Rosenstein, M.T., Marx, Z., Kaelbling, L.P., Dietterich, T.G., Whistler, B.C.: To
transfer or not to transfer. In: NIPS 2005 Workshop on Transfer Learning, 4 pages
(2005)

11. Kaski, S., Peltonen, J.: Learning from relevant tasks only. In: 18th European Conf.
on Machine Learning, pp. 608–615 (2007)

12. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel meth-
ods. J. Mach. Learn. Res. 6, 615–637 (2005)

13. Bakker, B., Heskes, T.: Task clustering and gating for Bayesian multitask learning.
J. Mach. Learn. Res. 4, 83–99 (2003)

14. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classifica-
tion with Dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)

15. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from multiple
tasks. In: 22nd Int’l Conf. on Machine Learning, pp. 1012–1019 (2005)

16. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
15th Int’l Conf. on Machine Learning, pp. 55–63 (1998)

17. Silver, D.L., Mercer, R.E.: Selective functional transfer: Inductive bias from related
tasks. In: IASTED Int’l Conf. on Artificial Intelligence and Soft Computing, pp.
182–189 (2001)
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Abstract. Decision trees are among the most effective and interpretable
classification algorithms while ensembles techniques have been proven
to alleviate problems regarding over-fitting and variance. On the other
hand, decision trees show a tendency to lack stability given small changes
in the data, whereas interpreting an ensemble of trees is challenging to
comprehend. We propose the technique of Ensemble-Trees which uses en-
sembles of rules within the test nodes to reduce over-fitting and variance
effects. Validating the technique experimentally, we find that improve-
ments in performance compared to ensembles of pruned trees exist, but
also that the technique does less to reduce structural instability than
could be expected.

1 Introduction

Decision trees have been a staple of classification learning in the machine learning
field for a long time [1,2,3]. They are efficiently inducible, relatively straight-
forward to interpret, generalize well, and show good predictive performance. All
of these benefits, however, are diminished by the fact that small changes in the
data can lead to very different trees, over-fitting effects, and varying accuracies
when employed to classify unseen examples.

To deal with problems in classification learning such as over-fitting, ensem-
ble methods have been proposed. While the details vary, the main mechanism
remains the same: a so-called “weak” learner, such as the afore-mentioned deci-
sion trees, is trained on a particular sample distribution of the available training
data. The subset is then altered, possibly according to the performance of the
learned classifier, and another classifier trained. In the end, an ensemble of weak
classifiers is combined to classify unseen examples. The use of ensembles results
in more stability w.r.t. predictive accuracy since over-fitting effects of several
classifiers are balanced against each other. This advantage is however traded off
both against difficulties with interpreting the complete classifier, since it can
easily number tens of weak classifiers, and against increased training times.

To improve on the weaknesses of both decision trees and ensembles, we pro-
pose to essentially invert the ensemble construction process: Instead of inducing
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complete classical decision trees and combining those into a classifier, our solu-
tion – Ensemble-Trees – induces small ensembles of rules as tests in each inner
node. The expected benefits would be relatively small and interpretable trees
compared to ensembles of trees, and better structural stability w.r.t. changes in
the data and higher predictive accuracy compared to classical decision trees.

The paper is structured as follows: in the following section, we will develop
our approach, going over the main details of decision tree induction, k-best
rule mining, and combination of rule predictions in the final tree. In Section
3, the connection to existing works will be made, followed by an experimental
evaluation of our hypotheses regarding the behavior of Ensemble-Trees in Section
4. Finally, we discuss the results of this evaluation, and conclude, in Section 5.

2 From Decision Trees to Ensemble-Trees

Decision trees in different forms [1,2,3] have been one of the biggest success
stories of classification learning, with Quinlan’s C4.5 one of the most effective
symbolic classification algorithms to date. Even when adapted to allow for re-
gression or clustering, the main algorithm for inducing a decision tree stays more
or less the same: For a given subset of the data, a “best” test according to an
interestingness measure is selected, the data split according to this test, and the
process repeated on the two subsets thus created. The interestingness measures
used (e.g. information gain, intra-class variance) typically reward tests that make
the subsets more homogeneous w.r.t. a target variable (e.g. the class label, or
a numerical value). In general, a test can have any number of outcomes but
for reasons that will be discussed later we limit ourselves to binary tests. The
pseudo-code of a decision tree induction algorithm is shown as Algorithm 1.

Note that the best test as well as the prediction given in a leaf is not specifically
instantiated in this pseudo- code and depends on the data mining task at hand.

Algorithm 1. The General Decision Tree Algorithm
Input: a data set D, interestingness measure φ, minimum leaf size m
Output: a decision tree T
T =make node(D, φ, m)
return T

make node(D, φ, m)
Find best test t on D according to φ
Dyes = {d ∈ D | t matches d}
Dno = {d ∈ D | t does not match d}
if |Dyes| ≥ m ∧ |Dno| ≥ m then

nyes =make node(Dyes, φ, m)
nno =make node(Dno, φ, m)
return node(t, nyes, nno)

else
return leaf(prediction(D))

end if
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In the popular C4.5 approach, the leaf prediction is the majority class in D, and
a binary test takes the form of the attribute-value pair that leads to the largest
increase in homogeneity, measured by information gain. This means, however,
that small changes in the data can have a strong effect on the composition of
the tree. Consider φ to be information gain, and a data set with the following
characteristics:

index A1 A2 . . . class
1 v2 v1 . . . +
2 v1 v2 . . . −
3 v2 v1 . . . +
4 v1 v1 . . . +
5 v1 v2 . . . −
6 v1 v2 . . . −
7 v1 v1 . . . −
8 v2 v1 . . . +

. . . . . . . . . . . . . . .

Obviously, a change in either the value of A1 in instance 4, or the value of A2 in
instance 7 would improve the strength of these attributes as a test, respectively.
Similarly, removal of one of those two instances, e.g. as part of a cross-validation,
changes which attribute is chosen. Since the choice of test affects how the data
is split, this effect ripples down through the rest of the tree. Assuming that
A1 and A2 perform equally well on the rest of the data, the decision between
them comes down to an arbitrary tie-breaker, giving the tree potentially rather
different composition – and performance.

While attempts have been made to alleviate this problem, using linear com-
binations of attributes-value pairs in nodes [4], option trees [5], which in case of
tests with very similar performance keep all of them and sort the data down all
paths, or random forests [6], which randomly sample a subset of attributes as
candidates for tests, these techniques strongly decrease comprehensibility of the
tree, trading it off against better performance.

2.1 Ensembles of Rules and Efficient k-Best Induction

Ensembles of conjunctive rules, used together with conflict-resolution techniques
such as (weighted) voting [7], or double induction [8] have been shown to perform
better than decision lists, balancing the bias/over-fitting of single rules.

If this stabilizing effect of using a (small) ensemble of rules is brought to bear
for tests inside a decision tree node, we expect that splits effected by those ensem-
bles are less susceptible to changes in the data than splits effected by individual
tests. This in turn should lead to trees having rather similar composition and
structure, and ideally also similar rule ensembles in the test nodes. This also ex-
plains the name of our technique, Ensemble-Trees, since the tree-structure serves
to tie the smaller ensembles together.
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Additionally, over-fitting effects of individual tests can be expected to be
reduced, potentially removing the need for post-pruning. Using conjunctive rules
as tests always leads to binary splits, since a conjunction can be either true or
false, thus the formulation of a test as binary in the general algorithm.

Using a branch-and-bound search based on the pruning techniques for convex
interestingness measures (such as information gain, and intra-class variance) pi-
oneered by Morishita and Sese [9], it is possible to efficiently induce the k best
conjunctive rules w.r.t. the measure used. The branch-and-bound technique is
based on calculating an upper bound for each rule encountered during enumer-
ation. Only rules whose upper bound exceeds the kth-best score at the time of
potential specialization are actually specialized. For further details, we refer the
reader to Morishita and Sese’s work.

Thus, the generic “Find best test” can be instantiated by “Find the k best
rules”. Since conjunctive rules induced in this way are quantified w.r.t. a target
value such as the class label, the split becomes more complex than the straight-
forward “match” used in the general algorithm. We will discuss the majority
voting technique used in our approach in the next section.

2.2 Majority Splitting

Splitting the data according to a single attribute-value pair is straight-forward
in that the pair either matches an instance, or does not match it, and the class
prediction is implicit in how the distribution of class labels changes in the subsets
produced. We adopt the convention that the left branch of a test node is the
“yes” branch, i.e. instances that are matched by a test are sorted to the left,
unmatched instances to the right.

Once several tests are used to split the data, the situation becomes a bit
more complex however. Consider the following three rules for a binary prediction
problem:

1. A1 = v1 ∧A2 = v1 ⇒ +
2. A3 = v1 ∧A4 = v1 ⇒ −
3. A1 = v1 ∧A5 = v2 ⇒ −

and a subset of instances:

index A1 A2 A3 A4 A5 class
1 v1 v1 v2 v1 v1 +
2 v1 v1 v1 v1 v1 +
3 v1 v2 v1 v1 v2 −
4 v1 v1 v1 v2 v2 −
5 v2 v1 v2 v1 v1 +

Considering the first instance, we see that rule 1 matches, therefore advocat-
ing that the instance be sorted to the left. Rules 2 and 3 do not match, thus
advocating to sort the instance to the right. Since they form the majority, it
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would be sorted to the right. However, their prediction is opposite to the predic-
tion of the first rule. Therefore, the match/non-match of rules 1, and rules 2 and
3 have a different semantic interpretation. In the interest of making class distri-
bution more homogeneous to facilitate classification, it is intuitive to interpret
the non-match of rules 2 and 3 as in effect advocating that instance 1 be sorted
to the left. All three rules are then in agreement and instance 1 is sorted left.

The convention that matched instances are sorted to the left therefore is
transformed into the convention that instance that are matched by rules that
predict the first class value (or not matched by rules predicting the second class
label) are sorted to the left, while in the opposite case being sorted to the right.
There is of course the alternative of having three branches – one for instances
for whom the first class is predicted, one for those with class two, and one for
unmatched instances, which could be evaluated in an extension of our technique.

Looking at instance 2, we observe that it is matched by both rules 1 and
2, garnering one vote for being sorted into either direction. Rule 3 acts as a
tie-breaker in this case, leading to instance 2 being sorted left. This example
illustrates that the k that governs the amount of rules used in a test node should
be odd so that ties do not have to be broken arbitrarily.

2.3 Inducing Ensemble Trees

Having covered the basic ingredients for inducing Ensemble-Trees in the preced-
ing sections, Algorithm 2 shows the pseudo-code of the complete algorithm.

Note, that the Ensemble Tree algorithm includes another pre-pruning/
stopping criterion: If it is not possible to find the user-specified amount of rules,
not enough different splitting tests improving homogeneity can be induced, and
the node is turned into a leaf. This can occur since typically k-best interestingness
mining rejects rules which have the same score as one of their generalizations,
since this translates into conjuncts that do not add any information. Similarly,
and additionally, to the minimum size of a leaf m, this criterion pre-prunes test
nodes that are not supported by enough data to be expected to generalize well.

3 Related Approaches

As mentioned above, Ensemble-Trees can be considered as extensions of classical
decision trees such as the trees induced by the C4.5 algorithm, in that the main
difference lies in the replacement of the attribute-value pairs in test nodes by
small ensembles of conjunctive rules. Our approach is not the first to attempt
and modify the tests in nodes however.

3.1 Decision Trees with Complex Tests

To our knowledge the first that recognized the problem of similarly performing
tests, and proposed a solution in the form of option trees were Kohavi and Kunz
[5]. Their solution consists of not choosing one out of several tests arbitrarily
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Algorithm 2. The Ensemble Tree Algorithm
Input: data set D, interestingness measure φ, minimum leaf size m, number
of rules k
Output: an Ensemble Tree T
T =make node(D, φ, m, k)
return T

make node(D, φ, m, k)
Attempt to find k best conjunctive rules R := {ri} on D according to φ
if |R| < k then

return majority class in D
end if
Dleft = {d ∈ D | at least 	k/2
 rules vote d is sorted left}
Dright = {d ∈ D | at least 	k/2
 rules vote d is sorted right}
if |Dleft| ≥ m ∧ |Dright| ≥ m then

nleft =make node(Dleft, φ, m, k)
nright =make node(Dno, φ, m, k)
return node(R, nleft, nright)

else
return leaf(majority class(D))

end if

but instead creating “option nodes” having children nodes including all of these
tests, and splitting the subset at each node. For classification, unseen examples
are propagated downwards through the tree, and in case of an option node,
the label predicted by the majority of child nodes chosen. While their approach
improved significantly on the accuracy of C4.5 and an ensemble of bagged trees,
the option trees themselves turned out to easily consist of one thousand nodes
or more, comparable to the accumulated size of 50 bagged trees.

In [4], the authors suggest an algorithm consisting of a mixture of uni-variate
(classical) decision tree tests, linear and non-linear combinations of attributes,
using neural networks. The resulting trees are reported to be smaller than uni-
variate trees and to improve on the accuracy in several cases. Obviously however,
such combinations of attributes will be harder to interpret for end users.

In [10] and [11], data mining techniques were employed to mine complex frag-
ments in graph- or tree-structured class-labeled data, which are then used as
tests in a decision tree classifier. The motivation in these works is similar to
ours in that the need for complex tests is acknowledged. Both techniques limit
themselves to a single test in each node, however, not attempting to correct
over-fitting effects during the induction of the trees.

3.2 Ensembles of Trees

Ensemble methods have been used with decision trees before, with the trees
acting as the weak classifiers in the ensemble scheme. One of the best-known
ensemble techniques, Bagging [12], was proposed specifically with decision trees
as weak classifiers. In bagging, repeated boot-strap sampling of a data set is
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performed, decision trees learned on each of these samples, and their predictions
combined using a majority vote. While Bagging helps in reducing over-fitting
effects, the fact that instead of one tree several are created can be an impediment
to interpreting the resulting classifiers.

The Bagging idea is taken one step further in the construction of Ran-

dom Forests [6]. Not only are instances resampled but for each test the set of
attributes that are evaluated as potential tests is chosen randomly. These two
effects, in addition to using the trees unpruned, essentially ensures that noth-
ing beyond attribute-interactions can be understood when interpreting the final
classifier – trading off accuracy against comprehensibility even further.

Boosting, as embodied for instance by the well-known AdaBoost system
[13] on the other hand, iteratively induces weak classifiers on data sets whose dis-
tribution is altered according to the performance of preceding classifiers. Mostly,
this takes the form of resampling misclassified instances, or re-weighting them.
While boosting technique can be proven to approximate the actual underlying
classification function to an arbitrary degree, the resulting ensemble is again
rather difficult to interpret, especially given the changes in the underlying dis-
tribution that are effected during the learning process.

3.3 ART – Changing Distributions

Finally, the ART approach [14] is related to our work in the sense that it uses
a “classical” mechanism for changing underlying class distributions – sequential
covering – in a novel way, inducing several rules on each subset. The stated
intentions are the same as ours but the resulting classifier is rather different. We
believe that the main insight (one that the authors did not make explicit) is that
existing techniques for creating subsets of the data to mine patterns or rules on,
can be used in far more general ways than have been explored so far.

4 Experimental Evaluation

An experimental evaluation is used to answer
Q1. How well Ensemble-Trees are suited to the classification task, especially

in the absence of post-pruning.
Q2. Whether the use of ensembles of rules as tests in the inner nodes leads to

more stable trees in the presence of changes in the underlying data, and whether
the resulting trees are smaller (and better interpretable) than ensembles of trees.

We use several UCI data sets to compare Ensemble-Trees to the WEKA [15]
implementations of C4.5, Bagging, and AdaBoost, each with C4.5 as the
weak classifier.

Since we limit ourselves to nominal attribute values in this work, numerical
attributes were discretized, using ten equal-width bins. With the branch-and-
bound technique used for inducing the rule ensembles limited to binary classes,
we used only data sets with two labels. However, given that every classification
problem can be translated into a number of one-against-one, or one-against-all
problems, we do not see this as a significant drawback of our approach.
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We performed experiments with the minimum leaf size parameter m set to
2, 3, 4, 5, 10 and in case of large data sets, 10% of the training data. As the in-
terestingness measure φ, information gain was used. Bagging and AdaBoost

were set to 10 iterations of inducing weak classifiers, and we built Ensemble-Trees
with k = 3, and k = 5, respectively. AdaBoost was used both in the resam-
pling and the re-weighting mode. Decision tree and ensemble method results are
reported using pruned trees while Ensemble-Trees are always unpruned.

4.1 Predictive Accuracy

Predictive accuracy was evaluated using a class-validated 10-fold cross-
validation, with the folds being the same for each method. Table 1 reports mean
and standard deviation for a minimum leaf size m = 5, except for the Trains
data set, where m = 2. While details vary, the main trends can be observed for
all minimum leaf sizes evaluated in the experiments.

Table 1. Predictive accuracies for decision trees/Ensemble-Trees, minimum leaf size 5

Data set C4.5 ETk=3 ETk=5 Bagging AdaBoostRS AdaBoostRW

Breast-Cancer 73.42 ± 5.44• 78.69 ± 4.34 80.14 ± 6.16 73.77 ± 6.98 67.09 ± 10.10• 66.77 ± 6.81•
Breast-Wisconsin 94.56 ± 2.93 95.28 ± 1.35 95.14 ± 1.80 95.42 ± 2.76 96.28 ± 1.81 95.99 ± 1.14
Credit-A 84.20 ± 2.93 85.51 ± 2.56 85.51 ± 2.56 85.22 ± 2.35 82.75 ± 3.45 82.03 ± 4.44•
Credit-G 71.90 ± 3.96• 80.33 ± 2.00 79.10 ± 5.09 74.40 ± 4.06• 72.60 ± 3.24• 70.30 ± 4.00•
Heart-Statlog 82.96 ± 8.04 81.85 ± 5.08 79.63 ± 6.82 80.74 ± 8.52 80.37 ± 7.82 78.52 ± 7.57
Hepatitis 84.50 ± 6.22 89.58 ± 5.61 90.92 ± 5.54 83.25 ± 5.35• 83.17 ± 7.07• 82.71 ± 8.27•
Ionosphere 88.60 ± 5.88 91.44 ± 3.82 88.92 ± 5.80 91.15 ± 4.37 90.87 ± 5.69 91.15 ± 6.25
Molec. Biol. Prom. 78.09 ± 14.57 83.73 ± 9.28 83.64 ± 11.36 88.00 ± 13.00 85.73 ± 10.96 88.64 ± 5.94
Mushroom 100 ± 0◦ 99.95 ± 0.06 99.95 ± 0.06 96.31 ± 5.94 100 ± 0◦ 100 ± 0◦
Tic-Tac-Toe 91.76 ± 3.81◦ 76.20 ± 1.47 72.86 ± 4.59 96.87 ± 1.55◦ 98.02 ± 1.59◦ 96.97 ± 2.62◦
Trains 60.00 ± 51.64 50.00 ± 52.70 50.00 ± 52.70 40.00 ± 51.64 80.00 ± 42.16 50.00 ± 52.70
Voting-Record 95.85 ± 2.83• 98.39 ± 1.11 98.62 ± 1.19 95.62 ± 2.29• 94.94 ± 3.04• 96.08 ± 3.09•

The table shows that Ensemble-Trees perform mostly well w.r.t. classification.
In several cases, Ensemble-Trees are significantly better than ensemble methods
(• denotes a significant loss of a technique at the 5%-level using paired t -test),
while being outperformed only on Mushroom (barely), and Tic-Tac-Toe (◦ de-
notes a significant win at the 5%-level).

Inspection of the standard deviations, however, gives a first indication that
Ensemble-Trees do not turn out to be more stable performance-wise when the
data composition changes. In fact, Ensemble-Trees using only three rules per
test-node ensemble show less standard deviation, i.e. less variance, w.r.t. accu-
racy than Ensemble-Trees with larger ensembles.

4.2 Size and Stability of Induced Trees

The second question we evaluated was concerned with stability of induced trees
w.r.t. changes in the data, and the comprehensibility of Ensemble-Trees and
ensembles of trees, respectively. We used the 10-fold cross-validation mechanism
to simulate changes in the underlying data, and report on size characteristics
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Table 2. Number of nodes per tree for C4.5/Ensemble-Trees, accumulated number of
nodes for all trees of the respective ensembles

Data set C4.5 ETk=3 ETk=5 Bagging AdaBoostRS AdaBoostRW

Breast-Cancer 13.6 ± 6.4 7.6 ± 3.5 9.4 ± 5.1 425.4 ± 19.4 485.2 ± 18.2 509.4 ± 14.7
Breast-Wisconsin 14.8 ± 1.5 13.4 ± 2.8 9.0 ± 2.1 154.2 ± 12.2 334.4 ± 12.2 331.8 ± 15.4
Credit-A 19.2 ± 4.2 16.4 ± 6.2 10.6 ± 6.1 226.6 ± 8.5 698.6 ± 17.0 725.2 ± 30.4
Credit-G 86.4 ± 9.2 22.8 ± 6.1 18.8 ± 8.9 896.0 ± 23.7 1212.2 ± 25.7 1239.2 ± 27.9
Heart-Statlog 14.4 ± 2.3 11.2 ± 2.2 10.8 ± 3.9 193.2 ± 14.5 302.6 ± 14.3 310.0 ± 14.5
Hepatitis 6.2 ± 3.0 10.6 ± 4.1 9.2 ± 3.0 86.6 ± 10.4 153.6 ± 7.9 165.4 ± 7.9
Ionosphere 17.2 ± 3.7 12.2 ± 6.0 10.4 ± 4.0 165.6 ± 7.6 243.4 ± 8.9 253.0 ± 9.2
Molec. Biol. Prom. 11.6 ± 1.0 5.4 ± 0.8 6.4 ± 1.3 98.2 ± 8.3 83.4 ± 3.9 85.8 ± 6.0
Mushroom 17 17 21 153.8 ± 5.6 17 169.4 ± 15.0
Tic-Tac-Toe 53.4 ± 2.8 3 2.8 ± 0.6 573.4 ± 9.2 700.8 ± 31.4 736.6 ± 23.7
Trains 3 3 3 30.2 ± 0.6 23.5 ± 7.5 28.4 ± 0.8
Voting-Record 8.2 ± 1.0 13.0 ± 3.4 13.2 ± 4.0 75.6 ± 6.7 184.2 ± 18.0 181.6 ± 15.7

of the trees in Tables 2 and 3. For C4.5 decision trees and Ensemble-Trees , we
report the mean and standard deviation of sizes (number of nodes) and maximal
depths, i. e. length of the longest branch, of the different trees. Since ensemble
methods induce a different tree in each iteration, averaging over iterations and
the folds becomes a difficult endeavor, and we report on the accumulated number
of nodes (of all trees per fold).

Inspection of Table 2 shows that Ensemble-Trees always have a lot less nodes
than ensembles of trees. Even if the accumulated sizes are normalized by di-
viding by the number of trees, this difference is still pronounced in most cases.
Given that the ensemble methods do not improve markedly on the accuracy of
Ensemble-Trees in most cases, quite a few more bags/iterations would be needed
for better performance (except for the Mushroom data set), in turn leading to
even less comprehensible final classifiers.

Ensemble-Trees also typically have somewhat fewer nodes than classical C4.5

decision trees, due to the more expressive tests in the nodes. The cases where
this trend does not hold (the Hepatitis, and Voting-Record data sets) or is ex-
aggerated (the Breast-Cancer, and Credit-G data sets) are also the ones where
Ensemble-Trees perform best compared to the other approaches. However, in
the case of the Tic-Tac-Toe data set, the small number of nodes is actually
a symptom of an underlying characteristic, with another being the atrocious
performance of Ensemble-Trees , compared to the other methods.

To explain the mechanism at work here, Figure 1 shows binary class data
points in two-dimensional space, and the decision surfaces of three rules r1, r2, r3.
As can be seen, each of these rules predicts the positive class, advocating that

the instances they cover be sorted to the left. Additionally, however, all of them
advocate the sorting of the instances covered by the other two rules to the right.
The result of the majority vote on this is that all instances are sorted to the right,
the left subset is empty and thus its size less than m, leading to the formation
of a leaf. The rather aggressive pre-pruning effected by this stopping criterion
becomes problematic on data sets with small, non-overlapping sub-regions in the
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Fig. 1. Binary class data and decision surfaces of three discriminatory rules

Table 3. Averaged maximal depths for C4.5 trees/Ensemble-Trees

Data set C4.5 ETk=3 ETk=5

Breast-Cancer 4.1 ± 1.5 2.90 ± 1.2 3.5 ± 2.2
Breast-Wisconsin 4.4 ± 0.5 4.2 ± 0.9 3.9 ± 0.9
Credit-A 6.7 ± 1.3 5.8 ± 2.7 4.0 ± 2.7
Credit-G 23.9 ± 2.3 7.9 ± 2.1 18.8 ± 8.9
Heart-Statlog 3.2 ± 0.8 3.8 ± 0.8 3.6 ± 1.0
Hepatitis 1.1 ± 1.5 4.7 ± 2.0 4.0 ± 1.3
Ionosphere 6.9 ± 1.6 5.6 ± 3.0 4.6 ± 1.8
Molec. Biol. Prom. 2.8 ± 1.0 2.2 ± 0.4 2.7 ± 0.7
Mushroom 4 5 5
Tic-Tac-Toe 6.0 1 0.9 ± 0.3
Trains 1 1 1
Voting-Record 2.6 ± 0.5 4.2 ± 0.8 4.4 ± 1.1

data. Tic-Tac-Toe is such a data set, as indicated by the rather large number of
nodes (and therefore leaves) in – pruned – C4.5 decision trees.

The expected stabilization of trees w.r.t. changes in the data, however, cannot
be observed. Neither in the number of nodes, nor in the maximal depths of trees
do Ensemble-Trees markedly decrease the standard deviation over folds, com-
pared to C4.5 pruned trees. Quite contrary, while the trees are shallower, and
mostly smaller, Ensemble-Trees often show greater variance in both characteris-
tics than classical decision trees do. Since the size measurements were extracted
after post-pruning, we finally compare unpruned C4.5 trees to Ensemble-Trees
in an attempt to understand how much of a stabilization effect post-pruning
provides to the decision trees. The number of nodes is shown in Table 4, with
the characteristics of Ensemble-Trees duplicated from Tables 2. Due to the page
limit, we do not show the effects of pruning on the depth of trees here.

While Table 4 suggests that the reduction in variance for the size of a decision
tree is a result of the post-pruning operation, and similar effects exist regarding
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Table 4. Number of nodes per tree for unpruned C4.5/Ensemble-Trees

Data set C4.5 ETk=3 ETk=5

Breast-Cancer 41.0 ± 8.7 7.6 ± 3.5 9.4 ± 5.1
Breast-Wisconsin 19.4 ± 4.9 13.4 ± 2.8 9.0 ± 2.1
Credit-A 35.8 ± 11.2 16.4 ± 6.2 10.6 ± 6.1
Credit-G 147.0 ± 10.1 22.8 ± 6.1 18.8 ± 8.9
Heart-Statlog 26.8 ± 3.3 11.2 ± 2.2 10.8 ± 3.9
Hepatitis 24.8 ± 2.6 10.6 ± 4.1 9.2 ± 3.0
Ionosphere 17.2 ± 3.7 12.2 ± 6.0 10.4 ± 4.0
Molec. Biol. Prom. 11.6 ± 1.0 5.4 ± 0.8 6.4 ± 1.3
Mushroom 21 17 21
Tic-Tac-Toe 68.2 ± 7.3 3 2.8 ± 0.6
Trains 3 3 3
Voting-Record 8.8 ± 1.1 13.0 ± 3.4 13.2 ± 4.0

maximal depth of the tree, this still means that Ensemble-Trees are structurally
not more stable w.r.t. changes in the data than classical decision trees. While
the use of ensembles of conjunctive rules as tests could bring more stability to
the final tree, this promise remains unfulfilled. A potential improvement could
lie in a better solution for the combination strategy, an issue we will investigate
in future work.

A final subject that needs to be addressed is the interpretability of found
solutions. Classical decision trees and ensemble methods are the borders of an
interval that ranges from
– Easy (decision trees): paths are interpreted as conjunctions, tests as disjunc-

tions, via
– Challenging (Bagging): individual trees are supposed to describe broadly

the same phenomena, with the final classifier being an average of all, to
– Hard (Boosting): individual trees model local phenomena, with the final

classifier being a weighted combination,

with Ensemble-Trees residing somewhere on the easier side of Bagging. As
stated above, divide-and-conquer (the decision tree mechanism) is a way of
changing class distributions. While decision trees are usually claimed to be eas-
ily interpretable, especially when written down in rule-form, this is deceiving in
that each test is meaningful on a different distribution than the ones preceding
it. So removing the tree structure is a blessing in disguise since a relevant part of
the full model is not seen by the user anymore. Once the tree structure is kept,
however, with conjunctive rules in the nodes themselves having a clear semantic,
an Ensemble-Tree is rather straight-forward to interpret, especially when small
ensembles are used.

5 Conclusion

In this work we develop the classification technique of Ensemble-Trees , an at-
tempt to leverage the power of ensemble techniques in dealing with over-fitting
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and variance effects, while retaining as much of the easy interpretability of de-
cision trees as possible.

Our experimental evaluation showed that over-fitting effects seem to be pre-
vented more efficiently, leading to better classification accuracy in several cases.
The structural stabilization of individual trees that seems possible if more com-
plex tests are used that balance each other’s bias, does not materialize however.

While the advantages of Ensemble-Trees are clear – no need for post-pruning,
shallower trees with fewer nodes, and far easier interpretability than existing
ensemble methods using decision trees as weak classifiers, they come with a
caveat. There exist data sets where the aggressive pre-pruning that results from
the use of ensembles of rules is detrimental to the performance of the classifier.
Potential remedies, such as changing the combination strategy, or dynamically
adjusting the k parameter, will be explored in future work.
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Abstract. In various application domains, data can be represented as
bags of vectors instead of single vectors. Learning aggregate functions
from such bags is a challenging problem. In this paper, a number of simple
neural network approaches and a combined approach based on cascade-
correlation are examined in order to handle this kind of data. Adapted
feedforward networks, recurrent networks and networks with special ag-
gregation units integrated in the network can all be used to construct
networks that are capable of learning aggregate function. A combina-
tion of these three approaches is possible by using cascade-correlation,
creating a method that automatically chooses the best of these options.
Results on artificial and multi-instance data sets are reported, allowing
a comparison between the different approaches.

1 Introduction

Instead of using the classical attribute-value representation, it is more natural
in some application domains to represent data as bags of vectors. This means
that each data instance is described by a bag of vectors, but has only one target
vector. Different instances can have different numbers of vectors in their bags,
making traditional machine learning methods that have a fixed number of inputs
impractical to use for this type of data. Moreover, the ability to process bags can
be seen as the crucial element that distinguishes attribute-value methods from
relational approaches, as explained in [1]. If we look at the kind of features that
are constructed by a relational learner, an essential property of these features
is that they map sets or bags of objects to a single scalar value. Functions that
perform this kind of mapping are called aggregate functions.

Typically, systems that are capable of learning this kind of aggregate features
use some simple and predefined aggregate functions like max or count. Most
often, a propositionalization approach is followed. In this kind of approach, each
data element is summarized into a vector of fixed length before the actual learn-
ing process. The components of this vector are then used as features. The ag-
gregate features can become more complex when nesting selection conditions is
allowed. As has been pointed out by Blockeel and Bruynooghe [1], the features
constructed by relational learning systems are generally of the form F(σC(S))
with S a set of objects, C a condition defined over single objects, σ the selection
operator from relational algebra, and F an aggregate function, which maps a
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set to a scalar. But to keep the propositionalization approach feasible, a limited
set of F functions needs to be used, and the number of different C considered
for σC must remain limited. For instance, Krogel and Wrobel [2] allow a single
attribute test in C, but no conjunctions.

Propositionalization is not the only possibility however. Some systems allow
to learn aggregate functions in a more flexible and direct way. For instance, in
ILP, if we have a clause happy father(X) :- child(Y,X), the “feature” constructed
is essentially of the form ∃ y : child(y, x), which tests if the set of all y’s related
to x through the child relation is empty or not. In the above clause, S is the
set of children of x, C is true, and F is the “there exists” operator (∃). For the
clause happy father(X) :- child(Y,X), age(Y,A), A < 12, S and F are the same,
while C is a condition on the age of the children now. But a direct approach
has disadvantages as well. The structure of the search space of features of the
form F(σC(S)) becomes much more complex and difficult to search when F can
be something else than ∃ [3]. Blockeel and Bruynooghe [1] pointed out that for
this reason these systems typically construct structurally complex conditions but
always use the same, trivial aggregate function, namely ∃. The importance of
using more complex aggregate functions has however been recognized by many
people [2,4].

Therefore it is useful to study how direct approaches could include aggre-
gate functions other than ∃. More recently, methods for learning more advanced
features of the form F(σC(S)) have been proposed. Vens, Van Assche et al.
[5,6] proposed a random forest approach that avoids the problems of searching a
complex-structured search space, while Vens [3] studied the monotonicity prop-
erties of features of the form F(σC(S)) and showed how efficient refinement of
such features is possible for the most commonly occurring aggregate functions.

All these are symbolic approaches to learning aggregate functions. In parallel,
Uwents and Blockeel studied to what extent subsymbolic representations of ag-
gregate features can be learned using neural network approaches. The advantage
of this approach is that the complex search is avoided and that the function F
and condition σC(S) in the F(σC(S)) feature are learned simultaneously and au-
tomatically. Recurrent neural networks were first proposed for this task, leading
to the concept of relational neural networks [7]. While a regular network maps
one input vector to an output vector, recurrent networks can map a sequence of
input vectors to a single output vector. This property was exploited to handle
sets of vectors, the elements of which were given as input to the network in
random order. Recurrent networks are however not the only option for learning
aggregate functions, a number of other network structures could be used as well.
Recently, also a cascade-correlation approach has been proposed [8].

All the previous work focused on extending relational learning with the ability
to learn aggregation functions, and evaluating how this ability affects overall
predictive accuracy. In this work, however, we focus on the particular problem
of learning aggregate functions of the formF(σC(S)), with S a given set of tuples.
From the point of view of relational learning, this is a simplified setting: there
is only one 1-n relation, relating each single target to a single bag of tuples.
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All these tuples are of the same type, and they do not participate in further
relations. While this is a limitation from the point of view of relational learning,
the exclusion of such further relational information allows us to get a better view
on the inherent capacity of certain neural network structures to learn particular
aggregate functions, which is the main aim of this research. Another point of
difference with previous work is that we study a broader range of aggregate
functions than has previously been done.

We will compare different methods for subsymbolic learning of aggregate func-
tions from bags of vectors with an associated target value. In Section 2, we discuss
three basic and simple methods that use adapted forms of standard neural net-
work structures, as well as a combined approach using cascade-correlation. In
Section 3, we present experimental results comparing the different approaches
to each other. We conclude in Section 4.

2 Neural Network Methods

2.1 Simple Methods

There are some straightforward and rather simple ways to use standard neural
networks structures in a slightly modified form to process bag data and learn
aggregate functions. Three of these simple approaches are discussed here.

Adapted Feedforward Networks. Probably the simplest way to extend nor-
mal feedforward neural networks to bags, is to use a feedforward network with
mmax × n inputs. In this formula, mmax is the maximum number of vectors a
bag can contain, while n is the number of real numbers per vector. When a bag
of size m is fed into the network, the first m×n inputs are filled with the values
of the m vectors in the bag. The order in which this happens, is not important.
The remaining (mmax − m) × n inputs are filled up with padding values. For
these padding values, a fixed, given value is used.

One of the disadvantages is that mmax can be quite large. This results in a
network with a lot of connections and corresponding weights to train, which is
bad because it increases the complexity of the model and the danger of overfit-
ting. Another disadvantage could be that the number of hidden neurons is fixed.
It seems more logical that the number of hidden neurons should be somehow pro-
portional to m, the cardinality of the input bag, because the complexity of the
function is probably also proportional to the size of the bag. These disadvantages
can be countered by duplicating the hidden neurons for each input vector in the
bag and by sharing the weights. Because the function that has to be learned by
the network should be invariant to permutations of the input vectors, a lot of
weights can be shared across the network. More precisely, the hidden units are
copied for each input vector and the weights are shared between these copies.
The weight sharing also applies to the weights for the different input vectors
within a copy. Finally, also the weights for the connections between these copies
and the output units are shared. This network structure will be referred to as
sym because of the symmetry introduced by the weight sharing.
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Networks with Aggregation Units. It is also possible to add some predefined
aggregate functions to the network. They are placed after a neuron. Activation
values for this neuron are computed for all input vectors in the bag and then the
aggregate function is used to combine all these activation values into a single value.
The aggregate functions could be placed after the hidden or the output units. Typ-
ical functions would be sum or max. The only condition for these aggregate func-
tions is that they have to be derivable to be able to compute the gradient. This kind
of approach has been applied to multi-instance problems before, where a softmax
function was used [9]. The softmax function is defined as

1
M

log

(
n∑

i=1

eM·xi

)
(1)

where M is a constant and the larger the value of M , the closer this function
will approximate the real max function. Instead of choosing a value for M that
is large enough to give a good approximation, one could take the limit for M
going to infinity, which gives the real max function and a formula for its deriva-
tive. The sum, softmax and max function will be considered here as possible
aggregate functions. Note that the use of a specific kind of aggregate function
in the network, does not necessarily limit the network to learning only this kind
of aggregate function from the data. By learning the right weights, other aggre-
gate functions could still be approximated. The different network types will be
referred to as sum, hsum, smx, hsmx, max and hmax. The prefix h indicates that
the function is placed after each hidden unit, otherwise they are placed after the
output units.

Recurrent networks. Another possibility is to use recurrent networks. They
are typically used to process time series or other sequences of data, but they could
be used to process bags as well, as done in [7]. The m vectors of the input bag
are fed into the network one after another. For each vector, the activation levels
of the hidden neurons are updated. After processing all input vectors, the last
activation levels are used to compute the activation level of the output neuron.
This kind of approach could be problematic if applied to large bags because
recurrent networks are hard to train on large sequences. In the rest of the paper,
two types of recurrent networks will be considered, locally and fully recurrent
networks. In the locally recurrent networks, denoted as lrc, each hidden unit has
a recurrent connection only with itself. In fully recurrent networks, named frc,
each hidden unit also has recurrent connections with all other hidden units.

2.2 Combined Method

The previously discussed network structures have two important drawbacks.
First of all, one of the network types has to be selected. After that, also the
number of units in the hidden layer has to be chosen. Both choices are not trivial.
A cascade-correlation approach solves this problem and makes a combination of
the simple methods possible. The idea behind the original cascade-correlation
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Fig. 1. Schema for an aggregate cascade-correlation network with 2 input vectors

algorithm [10] is to learn not only the weights, but also the structure of the
network at the same time. This is done in a constructive way, meaning that
only one neuron at a time is trained and then added to the network. One starts
with a network without any hidden unit, and then hidden neurons are added,
one by one, until some stopping criterion is satisfied. Once a hidden neuron has
been added to the network, its weights remain fixed throughout the rest of the
procedure. This also means that, besides the actual input vector, the output
values of these existing hidden units can be used as extra inputs for any new
hidden neuron. At the output, a linear function can be used.

The training of the network is done in two alternating phases. Before a new
hidden neuron is added, its weights are trained while keeping the weights of all
other hidden units fixed. This training is not done by minimizing the squared
error between target and output, but by maximizing the correlation with the
residual error. The residual error is defined as the difference between the actual
target value and the output of the existing network, before adding the new
neuron. The assumption is that its correlation with the residual error will make
a new neuron useful in reducing the residual error and improving the prediction
of the actual target. The maximization is done by computing the gradient and
performing some form of gradient ascent. Instead of training only one candidate
neuron at a time, a pool of neurons, initialized with random weights, can be
trained. At the end, the best one is selected. This increases the chance that a
good candidate will be found. Once the best candidate is selected and added to
the network, the output weights for the updated network can be trained. If a
linear function is used at the outputs, the output weights can be obtained by
simple linear regression.

The concept of cascade-correlation networks can be extended to networks for
learning aggregate functions, as proposed in [8]. The crucial difference is that



A Comparison between Neural Network Methods 93

instead of the simple hidden neurons, units that can process bags are used. These
units come from the simple networks presented above. The sym, hsum, hmax,
hsmx and lrc units can all be used as aggregation units in the hidden layer of
the cascade-correlation network. For the rest, the network and the training of it
works in the same way as for the feedforward cascade-correlation networks. A
schema of an aggregate cascade-correlation network for 2 input vectors is shown
in figure 1.

With all parts of the aggregate cascade-correlation network explained, it only
remains to discuss the training of the network in more detail. Each time a new
unit should be added to the hidden layer, a pool of units is created of all possible
types. Weights are initialized randomly. After that, all units in the pool are
trained for a number of iterations, similar to backpropagation. This training is
basically a gradient ascent, maximizing the correlation with the outputs. The
computation of the gradient depends of course on the type of unit. The gradient
ascent itself is actually done by using resilient propagation, as described in [11].
This method has the advantage that the step size is determined automatically
and convergence is faster than for a fixed step size. The basic idea is to increase
the step size when the sign of the gradient remains the same, and decrease the
step size when the sign changes.

When all units in the pool have been trained, the best one is chosen. In this
case, the best unit is the one with the highest correlation. When the unit with
the highest correlation has been chosen, it is installed in the network and the
output weights have to be learned again. Because linear activation functions
are used for the output units, the output weights can be determined with least
squares linear regression.

3 Experiments

In this section, a number of experimental results will be discussed. First, a series
of experiments is carried out on artificially created data sets. After that, the
methods are evaluated on a multi-instance data set.

3.1 Simple Aggregates

A simple experiment to examine the capacity of the aggregate cascade-
correlation network, is to create artificial data with predefined aggregate func-
tions and train the networks on it. The data consists of bags with a variable
number of elements. Each element of the bag is a vector with five components.
Only the first or the first and second component are relevant for the target value,
depending on the aggregate function under consideration. The values of these
components are randomly generated, but in such a way that the target values are
uniformly distributed over the possible target values. All the other components
are filled with uniformly distributed random numbers from the interval [−1, 1].
It is very likely that the number of vectors in the bags influences the difficulty
of the learning task, so different sizes are tested. The data sets denoted as small
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contain 5 to 10 vectors per bag, the medium data sets 20 to 30 and the large
ones 50 to 100. Each data set contains 3000 bags. A range of different aggregate
functions are used to construct the data sets:

1. count: the target is the number of vectors in the bag.
2. sum: the target is the sum of all values of the first component of the bag

vectors.
3. max: the target is the maximum value of the first component of the bag

vectors.
4. avg: the target is the average value of the first component of the bag vectors.
5. stddev: the target is the standard deviation of the values of the first com-

ponent of the bag vectors.
6. cmpcount: the target is the number of bag vectors for which the value of

the first component is smaller than the value of the second component.
7. corr: the target is the correlation between the first two components of the

bag vectors.
8. even: the target is one if the number of positive values for the first compo-

nent is even, and zero if it is odd.
9. distr: the target is one if the values of the first component come from a

gaussian distribution, and zero if they are from a uniform distribution.
10. select: the target is one if at least one of the values of the first component

lies in a given interval, and zero otherwise.
11. conj: the target is one if there is at least one vector in the bag for which the

the first and the second component lie in a certain interval.
12. disj: the target is one if there is at least one vector in the bag for which the

first or the second component fall in a certain interval.

The first 7 data sets have a numerical target, the others a nominal target.
In case of a nominal target, the number of positive and negative examples are
equal. Experiments are done using five-fold cross-validation. For each fold, 1800
examples are used as training set, 600 as validation set and another 600 as test
set. For the simple approaches, the number of hidden units is 3 and resilient
propagation [11] was used to train the networks for 1000 iterations. For the
cascade-correlation method, the maximum number of hidden units is limited
to 10. The number of candidate units trained in every step is 20. Each unit is
trained for 500 iterations, which should be enough to have converged to optimal
weights. For the data sets with nominal target, the accuracy is reported and for
the sets with numerical targets the mean squared error is used. For the simple
methods, only the best results are given and it is also indicated which types of
network achieved this performance or a performance very close to it. The results
are summarized in tables 1 and 2.

From the results, it is clear that most functions can be learned quite well.
Only the even function seems impossible to learn. This is not very surprising,
given that this is a kind of parity problem, which is known to be difficult. For
the distr function, the number of vectors must be large to be able to learn it
well. This makes sense because it is easier to say whether a bag of values come
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from a normal or uniform distribution if the bag is larger than when it is rather
small. Table 1 also indicates which types of networks are the best to learn the
considered concepts. There is no type that is best for all of them. Sometimes it is
clear why certain types are the best, for instance for the sum and max data sets,
but for other data sets it is not that obvious. This makes it hard to make the right
choice beforehand. Furthermore, the results for the cascade-correlation network
are always very close to the results for the best simple network or even beat
this result. This shows that using the combined cascade-correlation approach is
indeed a good idea.

3.2 Trains

The trains data sets are also artificially created data sets containing a number
of trains. Every train consists of a number of cars, carrying some load. Some of
the trains are eastbound, the others are westbound. The direction of the trains
is what has to be learned and this target concept is based on the properties of
the cars of a train and their loads. The cars of the train constitute a bag for each
train. A data generator [12] for this train problem was used to create 12 data
sets with different properties. Sets 1 to 4 consist of short trains, having 2 to 6
cars. Data sets 5 to 8 are similar to sets 1 to 4, except that they contain longer
trains. Each of these trains consists of 20 to 29 cars. The used concepts are the
same as for sets 1 to 4, except that the numbers in the aggregations are adapted
to the longer length of the trains. Data sets 9 to 12 contain noisy data. This
means that a number of samples have been mislabeled. The twelve datasets are
defined as follows:

Table 1. Results for the simple aggregate data sets using the simple network structures.
Accuracies or mean squared errors are given together with the standard deviations for
five-fold cross-validation. The results are those for the best type of network. The types
of network that produced this result or very similar results, are indicated in the last
column.

small medium large type

M
SE

count 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) hsum, sym
sum 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) hsum, sym
max 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) (h)max, (h)smx, lrc, frc
avg 0.03 (0.03) 0.01 (0.01) 0.01 (0.01) max, smx, lrc, frc, sym
stddev 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) hmax, hsmx
cmpcount 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) sym, hsum
corr 0.05 (0.04) 0.04 (0.02) 0.01 (0.01) sym, hsum, hmax, hsmx

ac
cu

ra
cy

even 52.6 (0.0) 51.7 (0.6) 51.4 (0.5) all types equal
distr 63.3 (0.6) 74.6 (0.9) 80.3 (0.9) hmax, hsmx
select 99.6 (0.3) 99.9 (0.1) 99.8 (0.2) smx
conj 99.9 (0.0) 99.9 (0.0) 94.5 (0.4) max, smx
disj 89.3 (1.2) 76.7 (0.9) 74.6 (1.3) hsmx
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Table 2. Results for the simple aggregate data sets using cascade-correlation. Accura-
cies or mean squared errors are given together with the standard deviations for five-fold
cross-validation.

small medium large
M

SE

count 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
sum 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
max 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
avg 0.06 (0.06) 0.01 (0.01) 0.01 (0.01)
stddev 0.02 (0.02) 0.01 (0.01) 0.00 (0.00)
cmpcount 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
corr 0.04 (0.04) 0.02 (0.02) 0.01 (0.01)

ac
cu

ra
cy

even 52.33 (0.00) 50.10 (0.73) 51.90 (0.72)
distr 66.18 (0.56) 76.68 (0.79) 84.10 (1.57)
select 99.15 (0.41) 99.63 (0.15) 98.87 (0.48)
conj 100.00 (0.00) 99.92 (0.11) 99.93 (0.20)
disj 99.00 (0.43) 97.75 (0.55) 96.30 (1.81)

1. Trains having at least one circle load are eastbound, the others are west-
bound.

2. Trains having at least one circle or rectangle load and at least one car with
peaked roof or 3 wheels are eastbound, the others are westbound.

3. Trains having more than 8 wheels in total are eastbound, the others are
westbound.

4. Trains having more than 3 wheels in total and at least 2 rectangle loads and
maximum 5 cars are eastbound, the others are westbound.

5. Same concept as for set 1.
6. Same concept as for set 2.
7. Trains having more than 53 wheels in total are eastbound, the others are

westbound.
8. Trains having more than 45 wheels in total and at least 10 rectangle loads

and maximum 27 cars are eastbound, the others are westbound.
9. Same concept as for set 1, but with 5% noise.

10. Same concept as for set 1, but with 15% noise.
11. Same concept as for set 3, but with 5% noise.
12. Same concept as for set 3, but with 15% noise.

Each data set contains 3000 instances. Experiments are done using five-fold
cross-validation which means that for each fold 1800 instances are used for train-
ing, 600 for validation and 600 for testing. For the simple approaches, the number
of hidden units is 5 and the number of training iterations is 1000. For the cascade-
correlation method, the maximum number of hidden units is limited to 10. The
number of candidate units trained in every step is 20. Each unit is trained for
500 iterations. The results are given in table 3. It is clear that most concepts can
be learned well. Most of the data sets without noise have an accuracy very close
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to 100%. Only for set 8, which has the most difficult concept, is it impossible to
get close to perfect accuracy. For the data sets with noise, the best accuracies
are all close to 100% minus the percentage of noise. It is also clear that cascade-
correlation has a performance that is superior to any of the simple methods, just
as for the simple aggregate data sets.

Table 3. Accuracies using five-fold cross-validation for the trains data sets

casc-corr sym lrc frc sum hsum max hmax smx hsmx
1 99.9 99.5 96.9 100.0 83.8 99.7 100.0 100.0 99.7 100.0
2 100.0 99.3 97.7 96.8 77.3 97.9 94.5 99.5 94.6 99.6
3 100.0 99.9 96.0 98.9 55.0 100.0 65.3 83.6 69.1 84.7
4 98.7 98.7 81.3 94.7 78.6 88.0 86.5 77.0 86.1 81.0
5 99.7 88.4 81.1 92.5 56.8 99.2 94.9 87.2 98.0 86.4
6 99.4 86.9 68.8 73.9 54.7 83.1 72.7 69.4 70.0 78.5
7 99.4 97.3 51.4 51.3 52.3 98.5 56.5 62.4 57.8 63.0
8 84.5 77.5 65.2 71.0 55.3 79.2 65.2 67.2 67.5 66.3
9 95.7 93.7 93.2 93.6 80.5 95.6 90.8 95.6 90.1 95.4

10 85.7 83.1 82.9 81.7 68.9 85.0 81.9 85.2 81.0 85.1
11 95.7 95.0 81.0 93.0 56.1 94.3 68.4 80.2 69.1 80.8
12 85.4 84.1 71.8 82.0 53.8 80.5 62.1 72.3 64.4 72.1

3.3 Musk

Musk is a well-known multi-instance data set [13]. Each data instance stands for
a molecule, represented by a bag of all its possible conformations. A conformation
is described by 166 numerical features. The molecules have to be classified as
musk or non-musk. The data set consists of two parts. The first part contains
92 molecules, the second part 102. In each bag, there are between 2 and 40
conformations for the first part, and between 1 and 1044 for the second part.

Experiments were carried out using 10-fold cross-validation. The simple meth-
ods have 5 hidden units and are trained for 500 iterations. For the cascade-
correlation networks, a pool of 20 neurons and 500 training iterations are used
in every step. The data sets are a bit too small to use part of them as validation
set. Therefore, the value of the correlation is used as stopping criterion. In the
beginning, the correlation of a newly trained unit will be very high. This cor-
relation decreases during the following training steps. Training will be stopped
when the correlation falls below 0.75.

The results for the musk data sets can be found in table 4. The best neural
networks perform well compared with the other methods. They do not beat all of
the multi-instance methods, but that is not unexpected given that these methods
were specifically designed for multi-instance problems while these networks are
more general. The cascade-correlation networks are all very small, in most cases
with just one hidden unit. If one looks at the type of unit selected, then this is
almost always a max or smx unit. This is the most logical choice in case of a
multi-instance problem. The networks with this type of units also have the best
performance for the simple networks.
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Table 4. Accuracies and 95% confidence intervals for the musk data sets using 10-fold
crossvalidation. Results for other methods are obtained from [13].

musk 1 musk 2
iterated discrim APR 92.4 [87.0-97.8] 89.2 [83.2-95.2]
GFS elim-kde APR 91.3 [85.5-97.1] 80.4 [72.7-88.1]
GFS elim-count APR 90.2 [84.2-96.3] 75.5 [67.1-83.8]
GFS all-positive APR 83.7 [76.2-91.2] 66.7 [57.5-75.8]
all-positive APR 80.4 [72.3-88.5] 72.6 [63.9-81.2]
backpropagation 75.0 [66.2-83.8] 67.7 [58.6-76.7]
C4.5 (pruned) 68.5 [40.9-61.3] 58.8 [49.3-68.4]

casc-corr 85.3 [83.1-87.5] 75.5 [72.6-78.4]
sym 75.8 [74.1-77.5] 71.1 [68.8-73.4]
lrc 77.2 [75.6-78.8] 75.2 [72.7-77.7]
frc 74.9 [73.4-76.4] 73.3 [70.8-75.8]
sum 56.6 [54.2-59.0] 49.0 [46.3-51.7]
hsum 78.2 [76.6-79.8] 65.5 [63.9-67.1]
max 73.1 [71.5-75.7] 65.6 [63.4-67.8]
hmax 79.0 [77.9-80.1] 77.4 [75.7-79.1]
smx 72.2 [71.0-73.4] 62.8 [60.8-64.8]
hsmx 77.3 [75.7-78.9] 78.1 [76.7-79.5]

4 Conclusion

In this paper, some subsymbolic approaches to learn aggregate function from
bag data were discussed. These methods are based on neural networks. First,
three simple methods were presented: adapted feedforward networks, recur-
rent networks and networks with special aggregation units integrated in the
network. Another possibility is to combine these three approaches by using
cascade-correlation, creating a method that automatically chooses the best of
these options.

Results on artificial and multi-instance data sets were reported to assess the
capacity of the different network structures. These results clearly show that it is
possible to learn aggregate functions or at least approximate them with neural
networks. They also indicate that the combined cascade-correlation approach is
superior to any of the simple methods.
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Abstract. Possible changes of the growing season of trees would have
significant consequences on forest production. Predicting the onset of
tree growth on the basis of climate records can be used for estimating
the magnitude of such changes. Conventional methods for estimating the
onset of tree growth use cumulative temperature sums. These estimates,
however, are quite coarse, and raise questions about making better use
of the weather information available. We approach the problem of pre-
dicting the onset of tree growth with a predictor based on a combination
of a k-nearest neighbor regressor and a linear regressor. The inputs are
weighted sums of daily temperatures, where the weights are determined
by a subset of Bernstein polynomials chosen with a variable selection
methodology. The predictions are smoothed for consecutive days to give
more accurate results. We compare our proposed solution to the more
conventional approach. The proposed solution is found to be better.

1 Introduction

The amount and properties of wood produced are related to the timing and
rate of wood formation during the growing season. Wood formation depends on
genetical signaling, availability of resources for growth, temperature, tree water
and nutrient status, and the stage of ontogenic development (e.g. [1,2,3]).

Despite the basic nature of the wood formation process, our present knowl-
edge concerning the timing and rate of the phases of tree growth is surprisingly
fragmentary. An important factor behind the gaps of knowledge is the difficulty
in measuring xylem formation at short intervals. Point and band dendrometers
have been used traditionally to monitor cambial dynamics (e.g. [4,5]). Changes
in stem dimensions are not solely a result of wood formation; they are often
caused by other processes, especially changes in stem hydration [6,7,8,9]. Since
dendrometers measure stem radius or circumference changes rather than wood
formation, it is difficult to distinguish between true wood formation and hydro-
logical swelling and shrinking.
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In our previous study, we evaluated the use of cumulative sum (CUSUM)
charts for automatically determining the onset and cessation dates of radial
increase based on dendrometer data [10]. The CUSUM chart is a tool for auto-
matically detecting small changes in the mean of a signal solely based on the
data. In order to produce reliable results, one has to choose suitable parameter
values for the chart and onset and cessation levels for stem radius. Once config-
ured properly, the method produced results similar to those determined by an
expert. This study is a sequel to [10].

Our aim in this paper was to provide new insights into statistical methods
that could be used for predicting the onset of radial increase based on weather
data. During dormancy release and growth initiation in the boreal zone, the
role of temperature is more important than the role of photoperiod or water
availability [11,12,13]. Therefore, we compared different statistical methods to
evaluate whether the expressed signal between temperature and the onset of
radial increase could be strengthened by selection of appropriate method.

In this paper, we are dealing with two stochastic processes: one concerning
the environmental factors, specifically temperature, and the other concerning
the radial growth of trees. Our interest lies in modeling the relationship between
these processes. We control the complexity of our research problem by reducing
the growth process to a single number. Thus, our goal is to predict the onset date.
Similarly, the complexity in the temperature data is controlled by computing
features from a reasonably long sequence of past data. A subset of the features
is selected based on their performance in the prediction task.

The rest of the paper is organized as follows: Section 2 introduces the meth-
ods used, from traditional and new ways of summarizing temperatures, through
variable selection, to the prediction machinery. Section 3 describes our results.
Section 4 concludes the paper with a summary, some comments, and future
directions.

2 Material and Methods

2.1 Traditional Temperature Sums

One of the oldest ecological concepts is the “degree-day” or “physiological time”
unit which mainly stems from the relationship between development rate of many
organisms and temperature (e.g. [14]). Phenological phases of plants have been
found to be related to accumulation of air temperatures above some threshold
below which the development stops.

Most attempts to improve the concept have dealt with either different calcu-
lation procedures used to obtain degree day estimates [15,16,17], or including
additional climatic parameters, such as soil water availability (e.g. [18]). We will
limit ourselves to the modification of the method [19] commonly used in Fin-
land, which computes degree-day sum as the cumulative sum of the differences
between the daily mean temperature and the threshold of +5 ◦C (negative values
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are set to zero). At least five consecutive days meeting or exceeding the threshold
are needed in order for the degree-days to accumulate from a given day.1

2.2 Bernstein Polynomials as Basis Functions on the Past

Instead of reducing the sequence of previous daily temperatures into just one
value, we can compute several temperature features. Thus by making more ef-
fective use of temperature data, we hope to improve our ability to predict the
onset. For this purpose, we use Bernstein polynomials [20]:

Bd
i (x) =

(
d
i

)
xi(1− x)d−i , i = 0, . . . , d . (1)

Bernstein polynomials have a special property: for any d ∈ {0, 1, 2, . . .}, the
polynomials of degree d sum to unity:

d∑
i=0

Bd
i (x) = 1 ∀ x ∈ IR . (2)

When limited to the range x ∈ [0, 1], the Bernstein polynomials are non-negative.
The polynomials are symmetric, Bd

i (x) = Bd
d−i(1 − x), and have roots at both

0 and 1, except that Bd
0 (0) = Bd

d(1) = 1. They also have a unique maximum
value in the range, at x = i/d for Bd

i (x). Some examples of the polynomials in
the limited range are shown in Fig. 1.
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Fig. 1. The Bernstein polynomials of degree 3

The polynomials have an application related to Bézier curves [20]. We use
them as weight functions in temperature features. Instead of summing temper-
atures above +5 ◦C as in the traditional temperature sum, we use the daily
temperature values even if they are lower than the threshold. Thus, when we

1 When computing the temperature sum every day in an online setting, this means a
delay of up to four days, i.e. the system is not causal.
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consider daily mean temperatures Ti and a history window of N previous days,
the Bernstein-weighted temperature features of degree d on day i are

sm(i) =
N∑

j=1

Bd
m

(
j − 1
N − 1

)
Ti−j , m = 0, . . . , d . (3)

Since the Bernstein polynomials sum to one, each day in the temperature
sequence gets equal weight, when we consider the combination of all temperature
features (3). It is clear that each temperature sum sm in (3) has a quite strong
correlation with some sn, at least for m and n that are close to each other. In
the next section, we discuss selecting a subset of the temperature features. As a
result of the selection, some days – or positions in the sequence of temperatures
of N previous days – will have more weight than others.

2.3 Selecting Basis Functions

We prefer relatively sparse or parsimonious models, because they are typically
easier to interpret and apply than more complex ones [21]. For selecting a suitable
subset of temperature features defined in (3), we employed Best First Search
(BFS) [22]. Simply testing all feature sets is infeasible due to the size of the
search space.

BFS is a wrapper method, i.e. it uses the machine learning algorithm as part
of the feature set search. In other words, the goodness of a feature set is defined
as its performance on the machine learning task at hand. The basic idea of the
algorithm is to advance in the state space, where a state represents a feature set.
New states are created by adding or removing one variable (simple operator)
or combining several additions or removals (compound operator) (Fig. 2). The
next state chosen is the one which has the lowest cost among the candidate
states. The search may start from any state. Typical choices are the empty set
or the full set of variables. The search proceeds until no major improvements to
the cost have been observed for a while. The exact behavior of the algorithm is
controlled with two user-definable parameters: one for setting the threshold for
considering a new state an improvement, the other for adjusting the stopping
criterion.

2.4 Smoothed Prediction with a Combination of a Parametric and
a Non-parametric Model

The k-nearest neighbor method (k-NN) is a traditional method used in classifica-
tion [23], but it can also be used for regression in an analogous way. We employed
a combination of a k-NN regression model and a linear regression model to pre-
dict the number of days until onset of radial increase. The aggregate prediction
is simply a weighted mean of the two parts. Temperature features (3) were used
as inputs and the number of days until the onset of radial increase as the target
variable. Figure 3 shows an example of the output of the predictor machine,
when predictions are made as a sequence, on consecutive days.
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The k-NN part of the predictor finds k days of the training set (reference
database) that are closest to the query day with respect to the temperature
features. The prediction of the k-NN part is effectively the mean of the target
variable on the neighboring days. When s is the vector of selected tempera-
ture features (3) on the query day, and si contains the corresponding values on
reference day i, the k closest days are found by computing the Euclidean dis-
tances (4) (or equivalently squared distances) over all the reference data, sorting

0,0,0,0

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,1,0,1 0,0,1,1

1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1

1,1,1,1

Compound operators

Simple operators  

Fig. 2. Structure of state space in BFS, when selecting from four possible variables
and creating new nodes using both simple and compound operators. Each state is a set
of input variables (1 = “variable present”, 0 = “variable absent”). Arrow from node a
to node b means that b is a child of a.
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Fig. 3. Example output of the prediction machine. The measured onset region, deter-
mined by the minimum and maximum onset dates of the individual trees, is marked
by the dashed lines.
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the distances, and choosing the indices i that correspond to the k smallest dis-
tances. Due to the non-parametric nature of the k-NN part, the training data
set becomes a part of the model, and is always needed when new predictions are
made.

di =
√

(s− si)T (s− si) (4)

The other part of the composite predictor is a simple linear regression on
selected temperature features (3), with time until onset of radial increase as the
target variable. When s and β are the chosen temperature features (accompa-
nied by a constant term) and regression coefficients, respectively (both column
vectors), the regression model is as in (5). The regression result yr is rounded
to the closest integer, which may be considered superfluous, because the final
output of the combined model is also rounded.

yr = sT β (5)

In an ideal situation, the predictor would always point to the same onset date,
independent of the day on which the prediction is made. When the predictions
are made as a sequence, the predicted onset date will, however, fluctuate. We
did a simple smoothing of the predictor’s output by taking a weighted mean
of the new prediction and the previous one. Then the effect of old, unsmoothed
predictions, undergoes exponential decay as the prediction sequence is extended.
The smoothing operates with unrounded values, but the final output is rounded
to a precision of one day. Since the predictor actually gives the time until onset,
the number of days separating the previous and current predictions is subtracted
from the previous result before it is used as part of the new prediction. The
smoothing process (without integer rounding) can be written as

ỹi = αyi + (1 − α)ỹi−1

= α[yi + (1 − α)yi−1 + . . . + (1− α)i−2y2] + (1− α)i−1y1 , (6)

where α ∈ (0, 1] adjusts the level of smoothing, ỹi is the i:th smoothed prediction
in the prediction sequence, and yi is the corresponding “novelty”, the new part
in the prediction. Note that the first prediction in the sequence is a special case,
where no smoothing is applied.

2.5 Dendrometer Data

Sample trees were selected at two sites located 300 m from each other in Tuusula,
southern Finland. In the first stand, the Norway spruce trees were growing in
a pure spruce stand on fertile mineral soil classified as Oxalis-Myrtillus forest
type [24]. Mean stem diameter of the sample trees at breast height was 27 cm
and relative crown length was 68 %. The sample trees were monitored during the
growing seasons of 2001–2005. In the second stand, four Norway spruce and four
Scots pine trees were monitored during the growing seasons of 2002–2003, and
another four spruce and four pine trees during the growing seasons of 2004–2005.
They were growing in a mixed spruce-pine stand on a relatively fertile mineral
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soil classified as Myrtillus forest type [24]. The total number of observations
(year × tree combinations) was, thus, 57. The stands and sample trees have
been described in detail in [10].

Stainless-steel band-dendrometers were installed on each tree at a height of
about 2 m. Changes in tree girth were measured at a resolution of 0.1 mm, corre-
sponding to diameter change of about 0.03 mm. The output of the dendrometers
was stored as 1-h averages. From these measurements, the daily values of stem
circumference were calculated as the mean of hourly values and the circumference
changes were converted to radial changes assuming a circular stem cross-section.
The dendrometer has been described in detail in [5].

For each year and tree, the onset date of radial increase was determined
visually and verified by the CUSUM method [10]. Depending on the year, we have
the onset date of either 5 (year 2001) or 13 (2002–2005) trees. Because we wanted
to evaluate the methods described above, i.e. detailed biological interpretation
of the increment onset is beyond the scope of this study, we averaged the data
from both sites and tree species. As mentioned above, swelling and shrinkage of
the tree, caused by changes in water level, add noise to the data.

Temperature data at 3-hour intervals were obtained from a meteorological
station of the Finnish Meteorological Institute located about 5 km from the
study stands. From the temperature measurements, the average daily values
were calculated as arithmetic means.

2.6 Test Setting

We run feature selection with BFS, selecting from a total of 40 or 20 temperature
features weighted with Bernstein polynomials, corresponding to all polynomials
of degree 39 or 19, respectively. The search is started from the empty set of
features. Years 2001–2004 are used for the feature selection in a 4-fold cross-
validation setting, where the onset date on one year is predicted based on data
from the remaining three years. Year 2005 is reserved as a (very limited) test set
for later use. From each year, days 81–200 are included, counting from the start
of the year. The temperature features are computed from 80 previous days, i.e.
the temperatures on days {x − 80, . . . , x − 1} are reduced to 40 or 20 numbers
to be associated with day x.

The feature selection also incorporates the selection of k for k-NN. In our
setting, the cost function of BFS tests the prediction machine with values of k
ranging from 5 to 50 in steps of 5. The cost is the MSE of all predictions, where
the predictions are made for each date in the range of 101–160 (April 11–June
9 in the case of “no leap year”). For comparison, the measured annual average
onset dates range from 133 to 144. The average was taken over all the years;
there are 4 · (160 − 101 + 1) = 240 error values to be averaged. In the feature
selection phase, the prediction sequence is not smoothed: α = 1 in (6). For later
tests, α = 0.4 was used, and the predictor was started at day 81, which allowed
a stabilizing period of 20 days before the measurement of prediction error. The
value of α was chosen by non-rigorous testing towards the goal of minimizing
error. The results are not sensitive to the specific choice of this parameter.
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3 Results

The traditional temperature sum alone does not provide an accurate prediction
about the onset date (Fig. 4). When excluding the smallest values of temperature
sum, the average onset date over different years could quite well be explained
by a straight line. The variance between years, however, is large.

The performance of the Bernstein-weighted temperature features is presented
in Table 1. The bottom part of the table lists comparative results, with no
feature selection or using just the traditional temperature sum. In these cases,
the k range tried was 10 to 110 in steps of 5. RMSE 1 means the square root of
the error measure used in the feature selection tests: the mean of squared errors
in the predictions sequences. For RMSE 2, each annual prediction sequence is
reduced to a single error measure, where the onset date given by the predictor is
set to be the first date in the sequence, where the predicted onset date and the
date of prediction intersect, i.e. according to the predictor, growth has already
started. The error is derived from the difference of this intersection date and
the date derived from the girth band data. When only predicting the onset on
one year, RMSE 2 would reduce to the absolute value of this error, but in the
table, we also show the sign of the error. “Valid.” is the error in the validation
tests used for selecting the features and k. “Test” and “Pseudo” are errors done
with the selected features and k, using data from all the year (2001–2005). In
the former case, only the year 2005 is predicted with the other years serving as
reference data. In the latter case, all the years are predicted one by one, with
the remaining years as reference data.

With our settings for BFS, the number of states evaluated was about 8000
out of 220 or 25000–35000 out of 240. The search was set to stop, when the 500
latest state expansions have not resulted in a cost smaller than 1.001 times the
best known cost.
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Table 1. Prediction error. The k-NN component was always used. Also linear re-
gression was used in some tests (see first column). The bottom part of the table shows
comparative results. The column marked with ∗ holds the signed absolute error instead
of RMSE.

#Features RMSE 1 (sequence) RMSE 2 (i.sect)
Model Chosen Total k Valid. Test Pseudo Valid. Test∗ Pseudo

lin + k-NN 16 40 5 5.2 5.0 4.9 6.4 5 5.8
k-NN 16 40 35 5.3 5.2 5.0 5.5 −2 4.5

lin + k-NN 8 20 5 5.4 6.4 5.3 5.1 6 5.5
k-NN 9 20 25 5.4 3.5 4.8 6.6 5 6.0

lin + k-NN 40 40 90 5.7 5.9 5.2 4.9 2 4.4
lin + k-NN 20 20 105 5.8 6.0 5.2 5.2 2 4.4
k-NN on temperature sum 50 8.5 2.5 7.0 8.7 1 6.9
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Fig. 5. Bernstein weighting functions chosen in rows 1 and 3 of Table 1. In the figures,
the most distant past is at the right end of the x-axis. Top row: 16/40 features. Bottom
row: 8/20 features. Left column: individual weighting functions. Right column: sum of
weights on the left.

We look at the “RMSE 1” results first, because that is the optimization cri-
terion in the validation tests. The tests, which average the error over several
years, show that the Bernstein polynomial temperature features produce pre-
diction accuracy superior to the traditional temperature sum. Adding one year
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of data always improved the average performance. The results from the predic-
tion of a single year’s growth (column “Test”) show that although close to each
other on the average, the different predictor settings may give quite different
results for any individual year. Note that the “truth” used as the basis of the
error measure is quite uncertain: when considering the onset dates suggested by
each girth band on a given year, the standard deviation ranges from about 3.7
to 9.0, averaging at 6.8 (days). The error measure “RMSE 2” shows generally
similar results in the sense that the traditional temperature sum is outperformed
by the new features. Also here the variation in a single year’s results is clearly
seen.

The optimal k decreases noticeably, when linear regression is also used in the
predictor machine. It seems that the addition of the simple regression model,
quite logically, regularizes the output of the k-NN model. A similar effect is
achieved with an increased k. When feature selection is omitted (the first two
rows in the bottom part of Table 1), the optimal k is very large despite the
presence of linear regression.

Figure 5 shows the features chosen by BFS in two of our tests. The results
look almost the same. In both cases, some highly correlated features are included,
but features concentrated in the middle part of the history window are curiously
missing.

4 Summary and Conclusions

In this paper, we presented a method for predicting the onset of stem radius
increase. The method is based on temperature features weighted with Bernstein
polynomials, and a combination of two simple regression methods operating on
those features. A subset of the features was selected with BFS. The motivation
for the development of the features was to extract more information from the
temperature time series than what is possible with the traditional temperature
sum, thus improving prediction performance.

In our cross-validation tests, the proposed temperature features outperformed
the traditional temperature sum. However, prediction accuracy still shows a large
year-to-year variation. There are at least two plausible reasons for the variation:
the nature of the dendrometer data (swelling, shrinking), and factors left out of
the model (everything but temperature).

After these initial steps with the prediction framework, we can think of ap-
plications for it. For example, we could try to find a possible trend in the past
onset dates. However, the potential differences between the current and past
environment would have to be considered: have the environmental factors not
included in the model changed so much over the years, that a model developed
using present data is not valid for the past? Another application possibility is
the modeling of phenomena other than the onset of stem radius increase.
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Abstract. Taxonomies for a set of features occur in many real-world
domains. An example is provided by paleontology, where the task is to
determine the age of a fossil site on the basis of the taxa that have
been found in it. As the fossil record is very noisy and there are lots
of gaps in it, the challenge is to consider taxa at a suitable level of
aggregation: species, genus, family, etc. For example, some species can
be very suitable as features for the age prediction task, while for other
parts of the taxonomy it would be better to use genus level or even
higher levels of the hierarchy. A default choice is to select a fixed level
(typically species or genus); this misses the potential gain of choosing the
proper level for sets of species separately. Motivated by this application
we study the problem of selecting an antichain from a taxonomy that
covers all leaves and helps to predict better a specified target variable.
Our experiments on paleontological data show that choosing antichains
leads to better predictions than fixing specific levels of the taxonomy
beforehand.

1 Introduction

Prediction and classification are popular tasks in data analysis. The input exam-
ples to these tasks are typically described in a vector space with the dimensions
of a set of features. The goal of the learning algorithm is to construct a model
that will predict a target variable or a class associated to the given input exam-
ples. The set of features describing the examples is crucial for the performance
and accuracy of the final learned model. Often, combinations of the input fea-
tures can provide a much better way to explain the structure of the data. The
problem of feature selection and feature construction is nowadays an important
challenge in data mining and machine learning [2,4,10].

We study feature selection problems on taxonomies. Taxonomies occur in
many real-world domains and add a richer representation to the plain set of fea-
tures. Consider a paleontological application, with a set of fossil species observed
across different sites. Commonly, species are categorized into several taxonomic
levels exhibiting the structure of a tree. A simple snapshot of a part of the pri-
mate taxonomy is shown in Figure 1. We have, for instance, that Pliopithecidae
and Hominidae. are primates; and the genus Homo belongs to the family Ho-
minidae. A family or genus is considered to occur at a site if at least one of the
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c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Taxonomy of the primates species for a paleontological application

species below it in the taxonomy occurs there. In general, an occurrence of a
internal node occurs if and only if at least one of the leaves below it occurs.

A fundamental task in this paleontological application is to predict the age
of the site from the observed taxa in the data [7,8,9,12]. Only few sites have
accurate age determinations from radioisotopic methods, and stratigraphic data
(information about the layers in which the fossils are found) is also often missing.
Thus the data about the taxa found at the site is all we have for determining
the age of the site. The prediction task can be based on using different levels of
the taxonomic hierarchy. Selecting aggregates of the features at the proper level
of the taxonomy tree is critical. For example, combining the observed species at
the genus level of the taxonomy can provide a much better predicting accuracy
than using directly the leaf (species) level.

A common solution in practice is to choose a fixed level of the taxonomy to
represent the new aggregated features; this implies combining all the species at
the same height of the taxonomy tree. Although this solution is natural, it misses
the potential gain of aggregating sets of species at different levels of the taxonomy
separately. A toy illustration is given in Figure 2: in (a) we have small binary
dataset with features from a to e and a given taxonomy on top of them; the
variable we wish to predict is the real-valued named Age. In the paleontological
example features are species and the age would represent how old each site is.
Choosing nodes y and z from the taxonomy with the aggregator of logical “OR”
we can better uncover the hidden structure in the data, shown in (b). We have
that a, b, c have been aggregated at height 2 and d, e, at height 1 of the taxonomy
level. For this example, having the different levels of aggregation is much better
than selecting always the level of species (leaf nodes of the taxonomy) or any
fixed level.

Motivated by the paleontological application [7,8,9,12], the general computa-
tional problem we consider is the following: select the best subset of the nodes
in the taxonomy which are not comparable (i.e., form an antichain) and still
cover all leaves, in order to improve the prediction accuracy of a target variable.
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Note that this definition is also useful for other applications, for instance market
basket data analysis, where we may wish to predict the age of a customer from
the products in the shopping basket. Also for the market basket data application
we have taxonomies available at the level of the items: e.g., wines and beers both
belong to the category of alcoholic beverages.

We address the complexity of the problem, present several algorithms inspired
by traditional feature selection approaches, yet exploiting the taxonomy tree
structure, and show how to sample uniformly at random non-comparable nodes
from the taxonomy tree. Our experiments on real paleontological data show that
antichains are natural for this application: they often represent a better refined
antichain than the one obtained by fixing the level of the taxonomy beforehand,
and typically, the predictions are then more accurate.

2 Problem Definition

Let F be a set of features. For the paleontological application, F would corre-
spond to the set of species observed in the data. A taxonomy T on the feature
set F is a rooted tree whose leaf nodes are exactly the elements of F . For any
node x ∈ T we define T (x) to be the set of leaf nodes whose ancestor x is. For
the root node r of T we have that T (r) = F . A taxonomy T defines a partial
order between nodes x, y ∈ T , as follows. We say that x precedes y, denoted
x � y, whenever T (y) ⊆ T (x), i.e., x is an ancestor of y. If x � y and y � x we
say the nodes are not comparable. Additionally, we denote with children(x) the
children of a node x ∈ T , and with parent(x) its parent.

An example of a taxonomy T is shown on top of Figure 2(a). The leaf nodes
are the set of species F = {a, b, c, d, e}. The internal nodes of the taxonomy
x, y, z and r represent possible categorizations of the data attributes: for instance
T (y) = {a, b, c} could correspond to the grouping of carnivores; T (z) = {d, e}
could correspond to herbivores and T (r) = {a, b, c, d, e} to all animals. We have
that y � x; y and z are not comparable; also, children(r) = {y, z}.

An antichain X = {x1, . . . , xk} of a taxonomy T is a subset of nodes from T
that are not comparable. A covering antichain X is an antichain that covers all
leaves, i.e. ∪x∈XT (x) = F . In the toy example in Figure 2, for instance {x, z}
is an antichain; an example of a covering antichain would be the set of nodes
{x, c, z}.

Additionally, consider an n×m data matrix D where each row vector is defined
along m dimensions of the feature set F . In the paleontological application the
rows of the matrix correspond to sites and columns to species. We denote by Df

the n × 1 column vector of D of a feature f ∈ F . In our application, Df is a
column vector with information of the absence/presence of species f in each site
of the data. A useful alternative description of the matrix D is to see it as the
the collection of column vectors Df from f ∈ F , that is: D = Df1 : . . . : Dfm

for all fi ∈ F , where “:” denotes juxtaposition of column vectors.
Given a node x ∈ T , denote by D(x) the aggregation of the columns in

D covered by x. Formally, D(x) = αx(Df1 , .., Dfk) with fi ∈ T (x), where αx
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is a function computed over the input columns selected by x and returning a
n × 1 column. For example, αx could be “OR” or “AND”, over the covered
columns; in the paleontological application it is typically “OR”. In general, for
a set of nodes X = {x1, . . . , xk} from T we let D(X) = D(x1) : . . . : D(xk)
be the concatenation of projections from each node in X . Consider the ex-
ample in Figure 2 and assume that the aggregation function αx associated
to every node x ∈ T is a logical “OR”. The result of D({y, z}) is shown in
Figure 2(b).

Projecting the data on a set of nodes of the taxonomy often returns much
better aggregates than the original values. To evaluate the quality of the different
data projections given by a set of nodes we will consider a target variable v /∈ F
whose value we wish to predict, i.e., we are interested in predicting the values
of the column vector Dv. In Figure 2 the variable v corresponds to the age of
the site. The goal of a learning algorithm A(D, v) (e.g., a predictor or classifier
depending on the domain of v) is to construct a model from D, in order to predict
v for new unseen data points. We denote with err[A(D, v)] the error returned
by the inferred model. The error can be calculated, e.g., as the square of the
differences between the predictions of the model A(D, v) and the real value of v
in a separate test set.

Following the example from Figure 2, the projection D({y, z}) would allow a
learning algorithm to clearly distinguish between two different segments of age:
those that are younger and those that are older than 40 million years.

We study the following problem on feature selection on taxonomies.
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Fig. 2. An example of a taxonomy tree on top of a set of features F = {a, b, c, d, e}
(a), and after projecting the data on nodes y and z of the taxonomy by means of an
“OR” aggregator over the columns covered by these nodes (b).
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Algorithm 1. Greedy algorithm
1: Input: Data D; a taxonomy T ; a learning algorithm A.
2: Output: Antichain X from T and err[A(D(X), v)]
3: X = ∅
4: N = all nodes from T
5: repeat
6: x∗ = arg minx∈N err[A(D(X ∪ {x}), v)] {Take the best next node from T }
7: X = X ∪ {x∗} ∪ {n ∈ N |n is sibling leaf of x∗}
8: N = N\{n ∈ N |n � x∗ or x∗ � n}
9: until N is empty

10: Return X and err[A(D(X), v)]

Problem 1 (Taxonomy Antichain Selection). Given a dataset D defined
over attributes F ∪ {v}, and let T be a taxonomy tree on the set F . Se-
lect a covering antichain X of T that minimizes err[A(D(X), v)] for the
variable v.

We refer to the Taxonomy Antichain Selection problem as Tas. The idea of
finding an antichain that covers all leaf nodes is natural in several applications:
antichains represent sets of nonredundant features that, potentially, will explain
the structure of the data much better than having an unmanageable number of
leaf features F . This is especially the case in paleontology, where we would like
aggregations of the species at different levels.

Proposition 1. The Tas problem is NP-complete.

This proposition is proven via a reduction from the Satisfiability problem
for certain choices of the aggregation function. Details are omitted due to space
constraints.

3 Algorithms

This section describes four algorithms for the Tas problem. As a baseline for our
proposals we also show how to sample antichains uniformly at random. Without
loss of generality we assume that the taxonomy T is rooted, i.e., there is a node
x such that T (x) = F .

3.1 The Greedy Algorithm

The scheme of Greedy approach is shown in Algorithm 1. The idea is simple and
inspired by a forward selection technique: at every step Greedy takes the node
x ∈ T with the least error increase (line 6). To enforce the antichain constraint,
all nodes in the path from/to the selected node x have to be removed as they
cannot occur together with x in the same solution set. An incremental solution
is constructed until all leaf nodes have been covered. Notice that when selecting
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Algorithm 2. Bottom-up Selection algorithm
1: Input: Data D; a taxonomy T ; a learning algorithm A.
2: Output: Antichain X from T and err[A(D(X), v)]
3: X = F {Initialize with leaves from T }
4: e = err[A(D(X), v)]
5: B+ = {y | y ∈ T , children(y) ⊆ X} {Nodes from T upper bordering X}
6: repeat
7: for all n ∈ B+ do
8: X ′

n = X\children(n) ∪ {n} {Swap children of n with n in the antichain}
9: e′

n = err[A(D(X ′
n), v)]

10: end for
11: n∗ = arg minn∈B+ e′

n {Take the best from the above swaps}
12: if e′

n∗ ≤ e then
13: X = X ′

n∗

14: e = e′
n∗

15: B+ = B+\n∗ ∪ {y | y = parent(n∗), children(y) ⊆ X} {Update B+}
16: end if
17: until Error e cannot be further reduced
18: Return X and err[A(D(X), v)]

a leaf node, this will always enforce the addition of all its sibling leaves into the
solution set (line 7); that selecting a leaf node will always enforce the addition of
all its siblings into the solution set, this is inherent to the requirement of finding
an antichain that covers all leaf nodes.

3.2 Top-Down and Bottom-Up Selection Algorithms

The following solutions are inspired by traditional backward elimination algo-
rithms. In our problem though, the steps for feature selection have to take into
account the topology of the taxonomy tree and ensure the antichain constraint
of the selected set of nodes. The scheme of the Bottom-up Selection algo-
rithm is given in Algorithm 2. Bottom-up Selection starts by taking all the
leaf nodes F as an initial antichain X (line 3). At all times, the positive border
B+ maintains the nodes from the taxonomy tree located right above the current
antichain X (lines 5 and 15). The algorithm iterates to improve the solution in
a bottom-up fashion: first, it evaluates all swaps between a node in the border
B+ and its children (currently belonging to the solution set) by calculating and
storing the error loss (lines 7–10); then, the antichain X is updated with the best
of those swaps (lines 12–16). The algorithm stops when the error cannot be fur-
ther reduced with any of the swaps. A complementary approach is the Top-down
Selection algorithm. The starting point X is initialized to be the root node of
the taxonomy, and the negative border B− maintains at all times nodes right
below the current antichain solution. Similarly as before, the algorithm would
try to find a better antichain by taking the best swap in a top-down fashion from
the taxonomy tree.
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Algorithm 3. Taxonomy Min-Cut algorithm
1: Input: Data D; a taxonomy T ; a learning algorithm A.
2: Output: Antichain X from T and err[A(D(X), v)]
3: Let T = (VT , ET ) be the vertices and edges of the taxonomy T
4: Let G = (V, E) be an undirected weighted graph as follows,
5: V = VT ∪ {s, t} {Nodes from T , plus a source s and a target t}
6: E = ET ∪ {(s, r) | r is root of T } ∪ {(f, t) | f ∈ F}
7: Set the weight w(e) of edges e ∈ E
8: for edge e = (x, y) ∈ G do
9: if y is the target node t ∈ G then

10: w(e) = +∞
11: else
12: w(e) = score(y) × h(y)
13: end if
14: end for
15: Find the minimum cut edges C of G {E.g. with Max-flow algorithms}
16: X = {y | (x, y) ∈ C} {X is the set of nodes selected below the min-cut}
17: Return X and err[A(D(X), v)]

3.3 Minimum Cut Based Algorithm

The algorithm Taxonomy Min-Cut is based on finding the minimum cut of a
graph G derived from T . The Minimum Cut problem on a weighted undirected
graph asks for a partition of the set of vertices into two parts such as the cut
weight (sum of the weights on the edges connecting the two parts) is minimum.
This problem can be solved using the max-flow min-cut theorem [1,6].

We map the antichain selection problem into a Minimum Cut problem by
constructing an undirected graph G which is a simple augmented version of T .
A scheme is shown in Algorithm 3. First, we extend taxonomy T with two extra
nodes: source node s and target node t (line 5); second, we add edges between
the root of T and the source s, and between leaves of T and the target node t
(line 6). For notational convenience we consider the undirected edges (x, y) ∈ G
to be implicitly directed towards the target node t, that is, whenever x � y we
will always write the edge as (x, y). For example, we always have (s, r) ∈ G,
being r the root of T ; also (f, t) ∈ G for all leaves f ∈ F of T .

An s, t-cut is then a set of edges in G whose removal would partition G into
two components, one containing s and the other containing t. The following
property follows.

Proposition 2. Let T be a taxonomy. Then every s, t-cut from G not containing
edges from t ∈ G corresponds to a covering antichain and vice versa.

Briefly, for a set of s, t-cut edges C of G, we have a covering antichain X =
{y | (x, y) ∈ C}. That is, nodes belonging to the antichain are just below the
s, t-cut. Similarly, each antichain X in T identifies an s, t-cut C separating source
and target in G: we only need to select the edges C = {(x,parent(x)) | x ∈ X}.
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Algorithm 4. Antichain Sampler algorithm
1: Input: A taxonomy T rooted at r
2: Output: Random antichain X from T
3: Flip a biased coin that comes up heads with probability 1/β(r)
4: if heads then
5: X = {r}
6: else
7: for nodes y ∈ children(r) do
8: Let Zy = Antichain Sampler(y) {Recursive call with a tree rooted at y}
9: end for

10: X =
⋃

y∈children(r) Zy

11: end if
12: Return X

To use the min-cut idea, it only remains to set the weights of the edges in
G appropriately (lines 8–14, Algorithm 3). We define the weight of an edge
(x, y) ∈ G to be the product of two factors: (1) the score of y, namely score(y),
and (2) the height factor of y, namely h(y). The score (1) of a node will depend
on the data D. Because a min-cut algorithm looks for a minimum weight cut
in G, the small values of score of a node indicate good quality of the node. For
example, as the score for a node x ∈ T we can use the inverse of the correlation
coefficient between x and the target variable v, that is 1/ρ(x, v), assuming +∞
when ρ(x, v) = 0; or also, we can take directly err[A(D(x), v)] as the score.

The height factor (2) of a node has to be inversely proportional to the distance
from that node to the root of T . The reason is that, by construction, the s, t-cuts
close to the root contain less edges. E.g., the single edge (s, r) ∈ G forms a very
small s, t-cut on its own and might be selected even with bad score. Typically,
we use as h(x) either 1/height(x), or directly h(x) = T (x) (that is, the number
of leaves covered by x). This last choice of h(x) maintains the natural property
of making all the s, t-cuts equally costly if nodes in the taxonomy are all equally
good in their score function. Finally, the weight of edges involved with the target
node t are set to +∞ (line 10, Algorithm 3) accordingly with Proposition 2.

In practice, the Taxonomy Min-cut only requires to evaluate the model once
per node; this is done when setting the scores of the edges (line 7, Algorithm 3),
so the number of calls to the classifier is linear. On the other hand, the algorithms
such as Greedy or Bottom-up have to call the classifier at each evaluation step.

3.4 Sampling a Random Antichain

As a baseline to compare the previous approaches we use random antichains.
Sampling them uniformly turns out to be an interesting problem in its own
right. Formally, given the taxonomy tree T rooted at r ∈ T , let β(r) be the
total number of covering antichains of T . Immediately, the recursion follows:
β(r) =

∏
x∈children(r) β(x) + 1. For every x ∈ T we have that β(x) corresponds

to the number of antichains that can be sampled from the subtree of T rooted
at x. For the leaf nodes f ∈ F we have always that β(f) = 1. The scheme of
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the Antichain Sampler algorithm is shown in Algorithm 4. The proof of the
following proposition comes naturally by induction on the recursion. Details are
omitted in this paper due to space constraints.

Proposition 3. The Antichain Sampler algorithm samples antichains from T
uniformly at random.

4 Experiments

The paleontological data contains information of fossil mammals in Europe and
Asia [8]. Columns correspond to species and rows correspond to sites. There are
originally around 2000 sites and 900 species. Because the raw data contains rare
species, as well as sites with only few species, we omit some of these from con-
sideration by creating variations of the original dataset. In the variations named
paleo X Y, we first remove species that occur less than X times in the raw
data; after this, we remove sites that have less than Y species after the elimina-
tion of the rare species. For the experiments we use the datasets Paleo 10 10,
Paleo 5 5 and Paleo 2 2. Note that by removing species and sites we are
making the data more sparse, hence Paleo 2 2 is the sparsest data matrix of
the three variations. The sizes of the taxonomies for these three datasets ranges
from 700 and 2500 nodes. Also, in addition to the entire taxonomy, we will con-
sider different subtrees separately, each one of which corresponds to an order,
such as carnivores or rodents. The task is always to estimate the age of fossil
discovery sites with linear regression.

We implemented the proposed algorithms as components of the Weka machine
learning software.1 For the calculation of the error function err[A(D(x), v)] and
evaluation of the models, we divide the dataset in two folds, training and test.
The error used in the model construction phase is based on error in the test
data. After that, we compare the solutions of the different algorithms with three
criteria: (1) size in number of nodes of the returned antichain; (2) number of
calls to the linear regressor needed to learn the final model (this provides an
idea of its running time); (3) the correlation coefficient between predictions and
actual ages in the test data; and (4) the root mean squared error of the model
(RMSE, again in the test data).

The baseline for algorithms is always the random antichain. We complement
each one of the experiments with a histogram of the correlation coefficients of
the real and predicted ages of 100 random antichains when necessary. We also
compare the algorithms with models that are based on selecting a certain level
of the taxonomy. These levels are (from general to specific) Family, Genus

and Species. The Species level consists of the leaf nodes, while the Genus

(Family) level is located one (two) step(s) above the leaf level.
Table 1 reports the results when using the complete taxonomy tree available

over the features. In Paleo 10 10 fixing the antichain at the level of the leaves
(Species) is the best obtained solution. In this case, algorithm Bottom-up is the

1 http://www.cs.waikato.ac.nz/ml/weka/
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Table 1. Results for the complete taxonomies with Paleo 10 10 and Paleo 5 5.
Columns: “size” is the number of nodes of the discovered antichain; “calls” is the num-
ber of calls to the linear regressor in the model construction phase; “corr” corresponds
to the the correlation coefficient of the linear regression when using the corresponding
antichain (in the test data); “RMSE” reports the root mean squared error of the linear
regression when using the corresponding antichain (in the test data). Rows: Family,
Genus and Species select a fix level of the taxonomy as the antichain. Random reports
the mean values over 100 antichains.

Paleo 10 10 Paleo 5 5

size calls corr RMSE size calls corr RMSE
Family 49 - 0.81 3.40 63 - 0.76 3.68
Genus 237 - 0.20 16.4 373 - 0.60 6.53
Species 428 - 0.88 2.62 867 - 0.65 6.04

Greedy 246 46534 0.67 4.89 464 140488 0.33 12.89
Top-down 145 1817 0.82 3.09 197 2619 0.79 3.91
Bottom-up 375 3737 0.86 2.65 794 10409 0.75 4.91
Tax Min-cut 201 726 0.51 6.62 306 1329 0.77 4.55

Random 325 - 0.83 3.04 615 - 0.1 150

closest to this species level. As we turn data into a sparser format with Paleo 5 5,
we observe a clear gain given by Tax Min-cut,which still it does not beat Top-down
but seems to gain learning power as the data goes sparser. Indeed, we observed
that Tax Min-cut typically refines the best of the three fixed antichains (i.e., it up-
grades the best of the three), typically this is the antichain at the Genus level, and
so, it can adapt better to sparser formats. Random antichains perform in average
surprisingly well on Paleo 10 10; as the data turns sparser, random antichains
are not able to predict as good as our proposed algorithms.

Finally we also ran the same experiments with Paleo 5 5 and Paleo 2 2

using different subtrees of the taxonomy. These correspond to taxonomies of
two orders of mammals; the Carnivora and Rodentia. Comparison with random
antichains can be seen in Figure 3. Here the vertical line indicates the correlation
obtained by the Tax Min-cut algorithm, which we expect to perform well on
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Fig. 3. Histograms of the correlation between predicted and real age from 100 random
antichains in the Carnivora and Rodentia subtrees of the taxonomy using Paleo 5 5

and Paleo 2 2. The vertical line indicates the performance of the solution given by
the Tax Min-cut algorithm in each case.
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Table 2. Results for the Carnivora and Rodentia subtrees of the taxonomy with Pa-

leo 5 5 and Paleo 2 2. Random reports the mean values over 100 antichains.

Paleo 5 5 Paleo 2 2

Carnivora Rodentia Carnivora Rodentia
size calls corr RMSE size calls corr RMSE size calls corr RMSE size calls corr RMSE

Family 12 - 0.47 4.90 10 - 0.52 4.74 17 - 0.41 5.45 8 - 0.44 5.37
Genus 61 - 0.48 4.86 121 - 0.79 3.45 140 - 0.36 5.87 75 - 0.63 4.74
Species 112 - 0.19 6.74 344 - 0.39 12.5 347 - 0.20 8.21 215 - 0.12 23.9
Greedy 67 3228 0.45 5.42 163 14017 0.73 4.40 139 9501 0.31 6.11 294 36640 0.60 5.38
Top-down 25 99 0.46 5.34 151 1176 0.74 4.20 75 258 0.40 5.58 190 2338 0.69 4.48
Bottom-up 48 578 0.45 5.38 232 2050 0.65 5.45 221 2073 0.35 5.89 500 4222 0.27 11.9
Tax Min-cut 33 188 0.47 5.30 106 476 0.78 3.77 96 460 0.42 5.55 234 861 0.67 4.67
Random 84 - 0.41 5.16 231 - 0.67 4.74 222 - 0.24 7.36 178 - 0.52 5.34

sparse inputs. With Paleo 5 5 we observe that Random can give results that are
as good (or maybe even better) than those obtained with Tax Min-cut. However,
in case of Paleo 2 2 the difference is more pronounced and Tax Min-cut gives
consistently better results than simply selecting a random antichain. This is
also the case with Bottom-up. The results reported in Table 2 show the same
conclusion as above: Tax Min-cut and Bottom-up are able to generalize much
better than other algorithms and select typically a better refinement of the
Genus level. From the computational perspective we should highlight that Tax
Min-cut tends to run faster than the other algorithms, which typically call the
linear regressor more times than the number of nodes in the taxonomy.

5 Related Work

The problem of selecting relevant features is a recurring theme in machine learn-
ing [2,4,10,11]. Typical strategies rely on a heuristic search over the combinato-
rial space of all features, e.g.: backward elimination, forward selection, the filter
approach, and the wrapper approach. The algorithms presented in this paper
are inspired by some of these techniques: Greedy can be seen as a taxonomic
forward selection algorithm; Top-down and Bottom-up have the flavour of back-
ward elimination approaches that take into account the space of the taxonomy;
finally, the Taxonomy Min-Cut solution can be seen as a filter approach.

There is also relevant work in machine learning on the problem of learning
classifiers from attribute valued taxonomies [5,15]. The work in [5] focuses on
Bayesian Networks. The approaches in [15] focus on näıve Bayes classifiers and
decision trees. Features are typically selected in a top-down fashion through the
hypothesis space given by the taxonomy; also, the problem is studied specifically
for the two mentioned learning algorithms. Our proposals complement those ap-
proaches by presenting feature selection in taxonomies as a general problem,
independent of the learning algorithm one wishes to use. Other different scenar-
ios for taxonomies occur when learning classifiers with class labels exhibiting a
predefined class hierarchy, e.g. [3]. Finally, taxonomies have been the target of
data mining as well: e.g. in association rules [13] or clustering [14].

6 Conclusions

We have considered the feature selection problem in taxonomies. Our motivating
application is the problem of determining the age of fossil sites on the basis of
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the taxa found in the sites. We formulated the problem of finding the best selec-
tion of features from a hierarchy, showed that it is NP-complete, and gave four
algorithms for the task. Of the algorithms, Greedy, Bottom-up and Top-down
are inspired by previous feature selection approaches where taxonomies where
not yet considered; Tax Min-cut uses the well-known min-cut max-flow theorem
to provide with a quick and rather good choice of an antichain.

The empirical results show that from the proposed methods, especially Tax
Min-cut works well; it performs at least as good as the best antichains that
are based on a fixed level of the taxonomy. Future work involves applying the
method to some interesting subsets of the paleontological sites, investigation of
other applications, and further study of the properties of the algorithms.
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Abstract. Several notions of redundancy exist for Association Rules.
Often, these notions take the form “any dataset in which this first rule
holds must obey also that second rule, therefore the second is redundant”;
if we see datasets as interpretations (or models) in the logical sense, this
is a form of logical entailment. In many logics, entailment has a syntac-
tic counterpart in the form of a deduction calculus. We provide such a
deduction calculus for existing notions of redundancy; then, we consider
a very general notion of entailment, where a confidence threshold is fixed
and several rules can act as simultaneous premises, and identify exactly
the cases where a partial rule follows from two partial rules; we also give
a deduction calculus for this setting.

Keywords: Association rules, redundancy, deductive calculus.

1 Motivation and Related Work

Data mining involves a wide spectrum of techniques; among them, Association
Rule Mining is a prominent conceptual tool and, possibly, a cornerstone no-
tion of the field, if there is one. Indeed, association rules are both among the
most widely studied topic in data mining research and among the most widely
employed data mining techniques in actual applications. Practitioners have re-
ported impressive success stories (failures being less prone to receive publicity);
researchers have provided a wealth of algorithms to compute diverse variants
of association rules on datasets of diverse characteristics, and there are many
extensions into similar notions for complex data. The volume of literature about
the topic is daunting. A recent survey is [5] but additional materials appear
in http://wwwai.wu-wien.ac.at/˜hahsler/research/association rules/,
for instance, at the time of writing.

Implications, that is, association rules that hold in 100% of the cases, had
been studied before in the research area of closure spaces (see, for instance, [9]
and [19]). Implications can be seen also as conjunctions of definite Horn clauses,
and the closure under intersection property that characterizes closures spaces
corresponds to the fact, well-known in logic and knowledge representation, that
Horn theories are exactly those closed under bitwise intersection of propositional
models (see e.g. [11]). Thus, as a form of knowledge gathered from a dataset,
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implications have several advantages: explicit or implicit correspondence with
Horn logic, therefore a tight parallel with functional dependencies and a clear,
hardly disputable notion of redundancy that can be defined equivalently both in
semantic terms and through a syntactic calculus. Specifically, in semantic terms,
an implication X → Y is entailed from a set of implications R if every dataset in
which all the implications of R hold must also satisfy X → Y ; and, syntactically,
it is known that this happens if and only if X → Y is derivable from R via the
Armstrong axiom schemes [17], namely, Reflexivity (X → X), Augmentation (if
X → Y and X ′ → Y ′ then XX ′ → Y Y ′, where juxtaposition denotes union)
and Transitivity (if X → Y and Y → Z then X → Z).

However, absolute implication analysis may become too limited for many ap-
plication tasks. Already in [15] we find a proposal to consider partial rules,
defined in relation to their so-called-there “precision”, that is, the notion of in-
tensity of implication now widely called “confidence”: for a given rule X → Y ,
the ratio of how often X and Y are seen together to how often X is seen.

Such search for implications or for partial rules was not used on really large
datasets until the introduction of the notion of support bound, that is, an abso-
lute threshold on how often the itemsets under analysis appear in the dataset.
The idea of restricting the exploration for association rules to frequent itemsets,
with respect to a support threshold, gave rise to the most widely discussed and
applied algorithm, Apriori [2], and to an intense research activity.

A well-known difficulty in applied association rule mining lies in that, on
large datasets, and for sensible settings of the confidence and support thresholds,
huge amounts of association rules are often obtained, much beyond what any
user of the data mining process may be expected to look at. Therefore, one
research topic that has been worthy of attention is the identification of patterns
that indicate redundancy of rules, and ways to avoid that redundancy [1], [6],
[12], [13], [15], [16], [18]; see also section 6 of [5] and the references therein. All
these definitions of redundancy are given either set-theoretically, in the sense of
inclusions among sets of attributes, or in a more general way, by resorting to
a confidence inequality: a rule is redundant with respect to another if it has at
least the same confidence of the latter for every dataset.

By analogy to the case of implications, it is natural to raise the question of
whether a deductive calculus for these different notions of redundancy among
partial rules can be designed. (We will keep this terminology throughout the
paper: implications are association rules of confidence 1, whereas partial rules
are those having a confidence below 1.) The Armstrong axiom schemes that play
such a role for implications are, in fact, no longer adequate: Reflexivity does hold
for partial association rules, but Augmentation does not hold at all, whereas
Transitivity takes a different form that affects the confidence of the rules: if the
rule A → B (or A → AB, which is equivalent) and the rule B → C both hold
with confidence γ, we still know nothing about the confidence of A → C; even
the fact that both A → AB and AB → C hold with confidence γ only gives us a
confidence of γ2 for A→ C. Regarding Augmentation, enlarging the antecedent
of a rule of confidence γ may give a rule with much smaller confidence, even zero:
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think of a case where most of the times X appears it comes with Y , but it only
comes with Z when Y is not present; then the confidence of X → Y may be high
whereas the confidence of XZ → Y may be null. Similarly, a rule with several
items in the consequent is not equivalent to the conjunction of the Horn-style
rules with the same antecedent and each item of the consequent separately: if we
look only into rules with singletons as consequents (as in the “basic association
rules” of [14] or in the useful apriori implementation of Borgelt available on
the web [4]) we are almost certain to lose information. Indeed, if the confidence
of X → Y Z is high, it means that Y and Z appear together in most of the
transactions having X ; but, with respect to the converse, the fact that both
Y and Z appear in fractions at least γ of the transactions having X does not
inform us that they show up together at a similar ratio of these transactions:
only a ratio of 2γ − 1 < γ is guaranteed to hold.

We have provided in a recent contribution [3] an analysis of several particu-
lar notions of redundancy in the literature; here, we progress further along that
study. First, we provide a deductive calculus that characterizes these notions
of redundancy. In a way similar to the Armstrong axiom schemes, we give de-
duction schemes such that exactly the rules that are redundant can be deduced
through these schemes. Then, we depart from most proposed notions of redun-
dancy by considering the possibility that a rule is redundant with respect to a
set of rules, instead of a single one; for that case we have our main contribu-
tion here. A first consideration is that we no longer have a single value of the
confidence to compare; therefore, we take a position like the one in most cases
of applications of association rule mining in practice, namely: fix a confidence
threshold, and consider only rules whose confidence is above it; alternatively, an
equivalent view would be that the confidence of all our conclusions should be at
least the same as the minimum of the confidences of the premises. For instance,
with items A, B, C, and D, assume that the confidence of the rules A → BC
and A → BD is above γ in a dataset D. What can be said, then, about the
confidence of the rule ACD → B in D? For instance, could one construct a
dataset where the rules A → BC and A → BD hold with 65% confidence and,
simultaneously, rule ACD → B falls below the same confidence threshold? The
answer is counterintuitive: it is, in fact, impossible, and we will provide a full
answer, characterizing exactly inference from two partial rules, as main result
of this paper, and a corresponding deduction scheme extending our calculus. In
fact, the existing notions of redundancy correspond exactly to entailment among
association rules just for a specific confidence interval, and our results suggest
the possibility of a pattern, where further values of the threshold would corre-
spond, successively, to the ability of using three partial premises, four, and so
on. However, to attain such a result, further efforts are still necessary.

2 Preliminaries

A datasetD is given; it consists of transactions, each of which is an itemset labeled
by a unique transaction identifier. The identifiers allow for many transactions
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sharing the same itemset. Upper-case, often subscripted letters from the end of
the alphabet, like X1 or Y0, denote itemsets. Juxtaposition denotes union of item-
sets, as in XY ; and Z ⊂ X denotes proper subsets. For a transaction t, we denote
t |= X the fact that X is a subset of the itemset corresponding to t.

From the given dataset we obtain a notion of support of an itemset: sD(X)
is the cardinality of the set of transactions that include it, {t ∈ D

∣∣ t |= X};
sometimes, abusing language, we also refer to that set of transactions itself as
support. Whenever D is clear, we drop the subindex: s(X).

We immediately obtain by standard means (see, for instance, [9] or [18]) a no-
tion of closed itemsets, namely, those that cannot be enlarged while maintaining
the same support. The function that maps each itemset to the smallest closed
set that contains it is known to be monotonic, extensive, and idempotent, that
is, a closure operator. This notion will be reviewed in more detail later on.

Association rules are pairs of itemsets, denoted as X → Y for itemsets X
and Y . Intuitively, they express that Y occurs particularly often among the
transactions in which X occurs. More precisely, the confidence cD(X → Y )
of an association rule X → Y in a dataset D is s(XY )

s(X) , that is, the ratio by
which transactions having X have also Y ; or, again, the observed empirical
approximation to a conditional probability of Y given X . As with support, often
we drop the subindex D. This view suggests a form of correlation that, in many
applications, is interpreted implicitly as a form of causality (which, however, is
not guaranteed in any formal way; see the interesting discussion in [8]).

We resort to the convention that, if s(X) = 0 (which implies s(XY ) = 0) we
redefine the undefined confidence as 1, since the intuitive expression “all trans-
actions having X do have also Y ” becomes vacuously true. Also, it is immediate
to check that cD(X → Y ) = cD(X → XY ) = cD(X → X ′Y ) for any subset
X ′ ⊆ X . When two rules have the same left hand side, and the same union of
left and right hand sides, we say that they are equivalent by reflexivity. Clearly
their supports and confidences will always coincide.

We discuss briefly now the following natural notion of redundancy:

Definition 1. X0 → Y0 is plainly redundant with respect to X1 → Y1 if the
confidence of X0 → Y0 is larger than or equal to the confidence of X1 → Y1,
whatever the dataset.

That is: in that case, if a data mining process with confidence threshold γ pro-
vides both rules as output, X0 → Y0 and X1 → Y1, then rule X0 → Y0 is
uniformative, and can be ignored, because the fact that its confidence is at least
γ is already guaranteed without computing it. Of course, such a redundancy
will happen only if the various itemsets involved, such as X0 and X1, have some
correlation. Several cases of redundancy have been identified already in the lit-
erature, and compared in [3]. We briefly review some related results.

Definition 2. 1. [1] If Z0 �= ∅, rule X0Z0 → Y0 is simply redundant with
respect to X0 → Y0Z0.

2. [1] If X1 ⊆ X0 and X0Y0 ⊂ X1Y1, rule X0 → Y0 is strictly redundant with
respect to X1 → Y1.
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3. [12] Rule X1 → Y1 covers rule X0 → Y0 if X1 ⊆ X0 and X0Y0 ⊆ X1Y1.

The original definition of cover in [12] is different but the same reference proves
the equivalence with the formulation we are using here.

In these three cases, it is not difficult to see that the confidence and support
of X0 → Y0 is at least that of X1 → Y1 ([1], [12]). Note that, in principle, there
could possibly be many other ways of a rule being redundant with respect to
another beyond covering, simple, and strict redundancies. Simple redundancy
relates rules obtained from the same (frequent) set X0Y0Z0. Strict redundancy
focuses, instead, on rules extracted from two different (frequent) itemsets, say
X0Y0 where X0 will be considered as antecedent, and X1Y1, where X1 will be
antecedent, and under the conditions that X1 ⊆ X0 and X0Y0 ⊂ X1Y1 (the case
X0Y0 = X1Y1 is already covered by simple redundancy). Our previous work has
contributed the following result:

Theorem 1. [3] Consider any two rules X0 → Y0 and X1 → Y1 where Y0 �⊆ X0.
The following are equivalent:

1. X1 → Y1 covers X0 → Y0;
2. rule X0 → Y0 is either simply redundant or strictly redundant with respect

to X1 → Y1, or they are equivalent by reflexivity;
3. both the confidence and the support of X0 → Y0 are larger than or equal to

those of X1 → Y1, whatever the dataset;
4. rule X0 → Y0 is plainly redundant with respect to X1 → Y1.

That is, the additional consideration of the support bound in formulation 3
(due to [1] as well) does not make the notion more restrictive, whereas the
notion of covering catches all possible nontrivial situations of plain redundancy.
The equivalence of the first two statements is immediate. Note that rules with
Y0 ⊆ X0 have confidence 1: they state just reflexivity, and are uninformative.

A major application of the notion of redundancy is the construction of “bases”:
sets of rules that make redundant all the remaining rules mined. Our previous
paper [3] has shown that the existing techniques for constructing bases with re-
spect to these equivalent notions of redundancy do attain the minimum possible
size of a basis. However, further reduction of the bases is still desirable, and the
only way to obtain it is through some stronger notion of redundancy.

One such stronger notion existing in the literature, which indeed allows for
smaller bases (most of the times) relies on handling separately implications from
partial rules. Indeed, implications can be summarized better, because they al-
low for Transitivity and Augmentation to apply in order to find redundancies;
moreover, they can be combined in a certain form of transitivity with a partial
rule of confidence, say, γ to give rules of confidence at least γ. The best way to
handle them is through a closure operator ([7], [9], [16], [18]). Specifically, given
a dataset D, the closure operator associated to D maps each itemset X to the
largest itemset X ⊇ X that has the same support as X in D; it can be defined
in several alternative ways. A set is closed if it coincides with its closure. When
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X = Y we also say that X is a generator of Y . Our definition gives directly that
always s(X) = s(X). We will make liberal use of this fact, which is easy to check
also with other definitions of the closure operator, as stated in [16], [18], and oth-
ers. Implications are intimately related to this closure operator: c(X → Y ) = 1
if and only if Y ⊆ X. Several quite good algorithms exist to find the closed sets
and their supports. In the literature, there are proposals of basis constructions
out of closed sets with respect to a notion of redundancy based on closures, a
natural generalization of equivalence by reflexivity that works as follows ([18],
see also section 4 in [16]): given a dataset and a closure operator corresponding to
implications that have confidence 1 in the dataset, two partial rules X0 → Y0 and
X1 → Y1 such that X0 = X1 and X0Y0 = X1Y1 turn out to be equivalent in terms
of support and confidence; the reason is that s(X0) = s(X0) = s(X1) = s(X1),
and s(X0Y0) = s(X0Y0) = s(X1Y1) = s(X1Y1), by the property stated above
that always s(X) = s(X).

Let B be the set of implications, of confidence 1, in the datasetD; alternatively,
B can be the basis already known for implications in a dataset [7]. From here
on, we require 0 < γ < 1, leaving the rules of confidence 1 to be handled from B.
Our previous work has contributed the following property, along the same lines
as Theorem 1:

Theorem 2. [3] Let B be a set of implications. Let X2 → Y2 be a rule not
implied by B, that is, where Y2 �⊆ X2. Then, the following are equivalent:

1. X1 ⊆ X2 and X2Y2 ⊆ X1Y1

2. Every dataset D in which all the rules in B hold with confidence 1 gives
cD(X2 → Y2) ≥ cD(X1 → Y1).

In either case we say that rule X2 → Y2 has closure-based redundancy relative
to B with respect to rule X1 → Y1.

3 Deduction Schemes for Redundancy

Redundancy is, in principle, more restrictive than entailment: so far, in the
literature, redundancy has been taken mostly to signify a relationship between
two association rules, as just described. We start our discussion of deduction
systems along the same lines.

We give now a calculus consisting of three inference schemes: right-hand Re-
duction (rR), where the consequent is diminished; right-hand Augmentation
(rA), where the consequent is enlarged; and left-hand Augmentation (�A), where
the antecedent is enlarged. As customary in logic calculi, our rendering of each
rule means that, if the facts above the line are already derived, we can immedi-
ately derive the fact below the line.

(rR)
X→Y, Z⊆Y

X→Z

(rA) X→Y
X→XY

(�A) X→Y Z
XY →Z
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We also allow always to state trivial rules: X→∅ , which, combined with (rA)
and (rR), allows us to infer X → Y whenever Y ⊆ X .

Scheme (�A) is exactly simple redundancy from Definition 2. The Reduction
Scheme (rR) allows us to “lose” information and find inequivalent rules (whose
confidence may be larger).

It is not difficult to see that the calculus is sound, that is, for every dataset, the
confidence of the rule below the line in any one of the three deduction schemes
is, at least, the same as the confidence of the rule above the line. For the scheme
(�A), this claim is Theorem 4.1 in [1]: correctness of simple redundancy. Likewise,
soundness for (rR) it is the next result in [1], Theorem 4.2. The soundness of
(rA) follows from equivalence by reflexivity. Also, trivial rules with empty right
hand side are always sound.

Of course, this extends to chained applications of these schemes. In fact, if we
start with a rule X1 → Y1, and keep applying these three inference schemes to
obtain new association rules, the rules we obtain are all plainly redundant with
respect to X1 → Y1.

The interesting property of these schemes, and our first contribution, is that
the converse also holds; that is: whenever two rules are related by plain redun-
dancy, it is always possible to prove it using just those inference schemes.

Theorem 3. Rule X0 → Y0 is plainly redundant with respect to rule X1 → Y1

if and only if X0 → Y0 can be derived from X1 → Y1 by repeated application of
the inference schemes (rR), (rA), and (�A).

Proof. That all rules derived are plainly redundant has just been argued above.
For the converse, assume that rule X0 → Y0 is plainly redundant with respect
to rule X1 → Y1. By Theorem 1, we know that this implies that X1 → Y1 covers
X0 → Y0, that is, by Definition 2, X1 ⊆ X0 and X0Y0 ⊆ X1Y1. Now, to infer
X0 → Y0 from X1 → Y1, we chain up applications of our schemes as follows:

X1 → Y1 �(rA) X1 → X1Y1 �(rR) X1 → X0Y0 �(�A) X0 → Y0

where the second step makes use of the inclusion X0Y0 ⊆ X1Y1, and the last
step makes use of the inclusion X1 ⊆ X0. Here, the standard derivation symbol
� denotes derivability by application of the rule indicated as a subscript. ��

3.1 Calculus for Closure-Based Redundancy

The calculus just given is not appropriate to handle closure-based redundancy,
because it does not contemplate any form of Transitivity. The stronger calculus
we provide now is sound and complete with respect to closure-based redundancy.
We will use two different symbols for rules: we will keep X0 → Y0 to denote as-
sociation rules, of which we will lower-bound the confidence, and we will use the
notation X0 ⇒ Y0 to denote implications. Our calculus for closure-based redun-
dancy consists of four inference schemes, each of which reaches a partial rule
from premises including a partial rule. Two of the schemes correspond to vari-
ants of Augmentation, one for enlarging the antecedent, the other for enlarging
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the consequent. The other two correspond to composition with an implication,
one in the antecedent and one in the consequent: a form of controlled transitiv-
ity. Their names (rA), (�A), (rI), and (�I) indicate whether they operate at the
right or left hand side and whether their effect is Augmentation or composition
with an Implication.

(rA)
X→Y, X⇒Z

X→Y Z

(rI)
X→Y, Y ⇒Z

X→Z

(�A) X→Y Z
XY →Z

(�I)
X→Y, Z⊆X, Z⇒X

Z→Y

Again we allow as well to state directly rules with empty right hand side:

X→∅ . Note that this opens the door to using (rA) with an empty Y , and this
allows us to transform an implication into the corresponding partial rule. Also,
(�A) could be stated equivalently with XY → Y Z below the line, by (rA).

The connection with the previous, simpler calculus should be easy to under-
stand: first, observe that the (�A) rules are identical. Now, if implications are
not considered separately, the only cases where we know that X1 ⇒ Y1 are those
where Y1 ⊆ X1; we see that (rI) corresponds, in that case, to (rR), whereas
the (rA) schemes only differ on cases of equivalence by reflexivity. Finally, (�I)
becomes fully trivial since X ⊆ Z makes X = Z, and the partial rules above
and below the line would coincide.

In the remaining of this section, we denote as B ∪ {X → Y } � X ′ → Y ′ the
fact that, in the presence of the implications in the set B, rule X ′ → Y ′ can be
derived from rule X → Y using zero or more applications of the four deduction
schemes.

We can characterize the deductive power of this calculus as follows: it is sound
and complete with respect to the notion of closure-based redundancy; that is, all
the rules it can prove are redundant, and all the redundant rules can be proved:

Theorem 4. Let B consist of implications. Then, B∪{X1 → Y1} � X2 → Y2 if
and only if rule X2 → Y2 has closure-based redundancy relative to B with respect
to rule X1 → Y1.

Proof (Sketch). Proofs given (within a slightly different framework) in [18] pro-
vide directly the soundness of (rI) and the soundness of a combination of (rA)
with (�I) that can be extended quite easily to obtain soundness of our four
schemes. To prove completeness, we must see that all redundant rules can be
derived. We assume the closure-based redundancy of X2 → Y2 and resort to
Theorem 2: we know that the inclusions X1 ⊆ X2 and X2Y2 ⊆ X1Y1 must hold.
From the second inclusion, and the properties of the closure operator, we have
that X2Y2 ⊆ X1Y1.

Now we can write a derivation in our calculus, taking into account these
inclusions, as follows:
X1 → Y1 �(rA) X1 → X1Y1 �(rI) X1 → X2Y2 �(�A) X2 → Y2 �(�I) X2 → Y2

Thus, indeed the redundant rule is derivable, which proves completeness. ��
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4 Closure-Based Entailment

We move on towards the main contribution of this paper. The following question
naturally arises: all these notions of redundancy only relate one partial rule to
another partial rule, possibly in presence of implications. Is it indeed possible
that a partial rule is entailed jointly by two partial rules, but not by a single
one of them? Along this section, we are after a calculus for all partial rules
whose confidence is above some fixed but arbitrary threshold γ. We will fully
answer this question by, first, characterizing precisely the case where a partial
rule follows from exactly two partial rules, the simplest case where our previous
calculus becomes incomplete; and, second, proving that a sound and complete
calculus can be constructed by adding one extra rule that allows us to conclude a
consequent partial rule from two antecedent partial rules. We present the whole
setting on top of closure-based redundancy, but an analogous development can
be made on top of plain redundancy. We consider the following definition:

Definition 3. Given a set B of implications, and a set R of partial rules, rule
X0 → Y0 is γ-redundant with respect to them, B ∪ R |=γ X0 → Y0, if every
dataset in which the rules of B have confidence 1 and the confidence of all the
rules in R is at least γ must satisfy as well X0 → Y0 with confidence at least γ.

As an interesting example that does not need the presence of implications, con-
sider the following fact, mentioned in the Introduction (the analogous statement
for γ < 1/2 does not hold, as discussed below):

Proposition 1. Let γ ≥ 1/2. Assume that items A, B, C, D are present in U
and that the confidence of the rules A→ BC and A→ BD is above γ in dataset
D. Then, the confidence of the rule ACD → B in D is also above γ.

We omit the proof, since it is just the simplest particular case of our main result
in the paper, which clarifies exactly these situations, and reads as follows:

Theorem 5. Let B be a set of implications, and let 1/2 ≤ γ < 1. Then, B ∪
{X1 → Y1, X2 → Y2} |=γ X0 → Y0 if and only if either:

1. Y0 ⊆ X0, or
2. B ∪ {X1 → Y1} |=γ X0 → Y0, or
3. B ∪ {X2 → Y2} |=γ X0 → Y0, or
4. all the following conditions simultaneously hold:

(i) X1 ⊆ X0

(ii) X2 ⊆ X0

(iii) X1 ⊆ X2Y2

(iv) X2 ⊆ X1Y1

(v) X0 ⊆ X1Y1X2Y2

(vi) Y0 ⊆ X0Y1

(vii) Y0 ⊆ X0Y2
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Proof (Sketch). Let us discuss first the leftwards implication. In case (1) the con-
sequent rule holds trivially. Clearly cases (2) and (3) also give the entailment,
though in a somehow “improper” way. For case (4), we must argue that, if all
the seven conditions hold, then the entailment happens. Thus, fix any dataset D
where the confidences of the antecedent rules are at least γ: these assumptions
can be written, respectively, s(X1Y1) ≥ γs(X1) and s(X2Y2) ≥ γs(X2), or equiv-
alently for the corresponding closures.

We have to show that the confidence of X0 → Y0 in D is also at least γ.
Consider the following four sets of transactions from D:

A = {t ∈ D
∣∣ t |= X0Y0}

B = {t ∈ D
∣∣ t |= X0, t �|= X0Y0}

C = {t ∈ D
∣∣ t |= X1Y1, t �|= X0}

D = {t ∈ D
∣∣ t |= X2Y2, t �|= X0}

and let a, b, c, and d be the respective cardinalities. Using condition (v), it can
be seen that all four sets are mutually disjoint. Now we bound the supports of
the involved itemsets as follows: clearly, by definition of A, s(X0Y0) = a. All
tuples that satisfy X0 are accounted for either as satisfying Y0 as well, in A, or
in B in case they don’t; disjointness then guarantees that s(X0) = a + b.

We see also that s(X1) ≥ a + b + c + d, because X1 is satisfied by the tuples
in C, by definition; by the tuples in A or B, by condition (i); and by the tuples
in D, by condition (iii); again disjointness allows us to sum all four cardinalities.
Similarly, using instead (ii) and (iv), we obtain s(X2) ≥ a + b + c + d.

If we split all the tuples that satisfy X1Y1 into two sets, those that additionally
satisfy X0, and those that don’t, using conditions (i) and (vi) it can be argued
that s(X1Y1) ≤ a + c and, symmetrically, resorting to (ii) and (vii), s(X2Y2) ≤
a + d.

Thus we can write the following inequations:

a + c ≥ s(X1Y1) ≥ γs(X1) ≥ γ(a + b + c + d)

a + d ≥ s(X2Y2) ≥ γs(X2) ≥ γ(a + b + c + d)
Adding them up, using γ ≥ 1

2 , and simplifying, we get a ≥ γ(a + b), so that
c(X0 → Y0) = s(X0Y0)/s(X0) = a/(a + b) ≥ γ as was to be shown.

For the converse, we first point out that the bound γ ≥ 1
2 is not necessary

for this part. The proof goes on by arguing the contrapositive, assuming that
we are in neither of the four cases, and showing that the entailment does not
happen, that is, it is possible to construct a counterexample dataset for which
all the implications in B hold, and the two premise partial rules have confidence
at least γ, whereas the rule in the conclusion has confidence strictly below γ.
This requires us to construct a number of counterexamples through a somewhat
long case analysis, omitted here for lack of space. ��

4.1 Extending the Calculus

We work now towards a rule form. Let us say that an entailment is proper if the
consequent follows from the given set of antecedents but does not follow from
any proper subset thereof. We propose the following additional rule:
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X1→Y1, X2→Y2, X1Y1⇒X2, X2Y2⇒X1, X1Y1X2Y2⇒Z

X1X2Z→X1Y1Z∩X2Y2Z

and state the following properties:

Theorem 6. Given a threshold γ and a set B of implications,

1. this deduction scheme is sound, and
2. together with the deduction schemes in Subsection 3.1, it gives a calculus

complete with respect to all entailments with two partial rules in the an-
tecedent for γ ≥ 1/2.

Proof (sketch). This follows easily from Theorem 5, in that it implements the
conditions of case (4); soundness is seen by directly checking that the conditions
(i) to (vii) in case 4 of Theorem 5 hold. Completeness is argued by considering
any rule X0 → Y0 entailed by X1 → Y1 and X2 → Y2 jointly with respect to
confidence threshold γ; if the entailment is improper, apply Theorem 4, otherwise
just apply this new rule with Z = X0 to get X0 → X0Y1 ∩X0Y2 and apply (�I)
and (rI) to obtain X0 → Y0. ��

5 Conclusions

Our study here belongs to a larger program of research on the fundamentals of
the Logic of Association Rules. We have described sound and complete variants
of a deductive calculus for redundancy and entailment notions defined in terms of
models, that is, datasets that assign a confidence value to each partial rule. The
notions of redundancy correspond to already existing proposals, which discuss
redundancy of a partial rule only with respect to another single partial rule;
in our Theorem 5 we have moved beyond into the use of two partial rules. We
believe this last step has been undertaken for the first time here since the early
attempts of [15].

On the basis of our results as described here, it turns out that the following
holds: for 0 < γ < 1/2, there is γ-entailment if and only if either of cases
1, 2, or 3 in Theorem 5 is true; existing notions of redundancy are, therefore,
fully appropriate for confidence below 1/2, but insufficient beyond. For larger
confidence thresholds, our preliminary analyses are very suggestive of a general
pattern, which we expect to be able to develop and apply to arbitrary values of
γ: further values of the threshold correspond, successively, to the ability of using
more and more partial premises. Namely, up to two partial rules can be used as
premise, but not three, if γ < 2/3; up to three, but not four, if γ < 3/4; and
so on. However, the combinatorics to fully characterize the case of two premises
are already difficult enough for the current state of the art, and progressing along
this line requires to build intuition to much further a degree. There remains to
study also a comparison with other “semantic” redundancy schemes based on the
actual values of the supports, such as those in [10] or, along a different track, [6].

Finally, we wish to discuss also the basis constructed in [3]: there we proved
that the size of that basis is minimum with respect to closure-based redundancy.
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It is worth to point out that our initial proofs of the results reported both here
and there were much more involved, and it was thanks to the calculus described
here that the minimum-size bases described in [3] were found, although further
work has allowed us to simplify the analysis for expository purposes. It is also
interesting to observe that, given the minimal basis described there, one can scan
it to check the existence of pairs of rules that generate a third rule in the basis
according to Theorem 5: then, removing these third rules gives a smaller basis
with respect to general entailment. We expect to be able to establish a more
general similar mechanism depending of the value of the threshold γ to reach
absolutely minimum-size bases with respect to general entailment.
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Abstract. Frequent closures (FCIs) and generators (FGs) as well as
the precedence relation on FCIs are key components in the definition
of a variety of association rule bases. Although their joint computation
has been studied in concept analysis, no scalable algorithm exists for the
task at present. We propose here to reverse a method from the latter field
using a fundamental property of hypergraph theory. The goal is to extract
the precedence relation from a more common mining output, i.e. closures
and generators. The resulting order computation algorithm proves to
be highly efficient, benefiting from peculiarities of generator families in
typical mining datasets. Due to its genericity, the new algorithm fits an
arbitrary FCI/FG-miner.

1 Introduction

The discovery of frequent patterns and meaningful association rules is a key data
mining task [1] whereby a major challenge is the handling of the huge number of
potentially useful patterns and rules. As a possible remedy, various subfamilies
have been designed that losslessly represent the entire family of valid associa-
tions (see [2] for a survey). Some of the most popular bases involve subfamilies
of frequent itemsets (FIs), e.g. closures (FCIs) or generators (FGs), which them-
selves losslessly represent the entire FI family. Part of these bases further require
the precedence relation among closures as well (e.g. the informative basis).

The aforementioned three structural components, i.e. FCIs, FGs, and prece-
dence, have been targeted in various configurations and from diverging view-
points. A range of data mining methods compute generators and closures (e.g.
Titanic [3] and A-Close [4]), and at least one targets closures and their order
(e.g. Charm-L [5]). In concept analysis, in turn, the focus has been on computing
both closures and order in the concept lattice [6], whereas a few methods also
output the generators (e.g. [7,8]). Dedicated methods for precedence computa-
tion exist as well, yet their reliance on transaction-wise operations hurts their
scalability (e.g. [9]).

Here we tackle the efficient computation of all three components. More pre-
cisely, we concentrate on the task of computing precedence links from the families
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of FCIs and FGs, i.e. from the output of some miners from the literature (see
above). In our analysis of the problem, we reverse an argument of Pfaltz for com-
puting generators from closures and precedence [7], using a fundamental result
from hypergraph theory. The restated problem amounts to the computation of
the minimal transversal graph of a given hypergraph, a popular problem that
nevertheless withholds some secrets [10]. Based on an adaptation of a classical
algorithm for the task, we provide our algorithm called Snow for efficient ice-
berg lattice construction. Our preliminary experiments show that the strategy
is very suitable as the order computation cost is only a fraction of the one for
discovering all FCIs and FGs.

The contribution of the paper is therefore threefold. First, we put forward an
important interplay between precedence and generators with respect to closures.
Second, we show that in practice it can be efficiently exploited to yield either the
generators given the FCIs and the precedence relation, or the precedence relation
given the FCIs and the generators. Third, the proposed concrete algorithm,
Snow, provides the capabilities of iceberg lattice construction to any FCI/FG-
miner.

The paper is organized as follows. Section 2 provides the basic concepts of fre-
quent itemset mining, concept analysis, and hypergraph theory. In Section 3, we
introduce the Snow algorithm. Finally, conclusions and future work are discussed
in Section 4.

2 Background on Frequent Itemsets, Iceberg Lattices,
and Hypergraphs

Here we recall the basic notions of frequent itemset mining, formal concept
analysis, and hypergraph theory on which our approach is based.

2.1 Frequent Itemsets and Their Distinguished Subfamilies

Consider the following 5× 5 sample dataset: D = {(1, ACDE), (2, ABCDE),
(3, AB), (4, D), (5, B)}. Throughout the paper, we will refer to this example
as “dataset D” .

We consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of at-
tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O×A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set of
transactions is called a tidset.1 For an itemset X , we denote its corresponding
tidset, often called its image, as t(X). For instance, in dataset D, the image of
AB is 23, i.e. t(AB) = 23. Conversely, i(Y ) is the itemset corresponding to a
tidset Y . The length of an itemset is its cardinality, whereas an itemset of length
k is called a k-itemset. The support of an itemset X , denoted by supp(X), is the

1 For convenience, we write an itemset {A, B, E} as ABE, and a tidset {2,3} as 23.
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Fig. 1. Concept lattices of dataset D. (a) The entire concept lattice. (b) An iceberg
part of (a) by min_supp = 3 (indicated by a dashed rectangle). (c) Although genera-
tors are not a formal part of the lattice, they are drawn within the respective nodes.

size of its image, i.e. supp(X) = |t(X)|. An itemset X is called frequent, if its
support is not less than a given minimum support (denoted by min_supp), i.e.
supp(X) ≥ min_supp. The image function induces an equivalence relation on
℘(A): X ∼= Z iff t(X) = t(Z) [11]. Moreover, an equivalence class has a unique
maximum w.r.t. set inclusion and possibly several minima, called closed itemset
(a.k.a. concept intents in concept analysis [12]) and generator itemsets (a.k.a.
key-sets in database theory or free-sets), respectively. The support-oriented def-
initions exploiting the monotony of support upon ⊆ in ℘(A) are as follows:

Definition 1 (closed itemset; generator). An itemset X is closed2 ( gen-
erator) if it has no proper superset (subset) with the same support (respectively).

The closure operator assigns to an itemset X the maximum of its equivalence
class. For instance, in dataset D, the sets AB and AD are generators, and their
closures are AB and ACDE, respectively (i.e. the equivalence class of AB is a
singleton).

The families of frequent closed itemsets (FCIs) and frequent generators (FGs)
are well-known reduced representations [13] for the set of all frequent itemsets
(FIs). Furthermore, they underlie some non-redundant bases of valid association
rules such as the generic basis [2]. Yet for other bases, the inclusion order between
FCIs is essential, and, in some cases, the precedence order between those. The
precedence relation ≺, henceforth referred to as merely precedence, is defined
the following way: X ≺ Z iff (i) X ⊂ Z, and (ii) there exists no Y such that
X ⊂ Y ⊂ Z. Here, X is called the (immediate) predecessor of Z.

2 In the rest of the paper, closed itemsets are abbreviated as “CIs” .
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The FCI family of a dataset together with ≺ compose the iceberg lattice, which
is a complete meet-semi-lattice (bottomless if ∅ is the universal itemset). The
iceberg corresponds to the frequent part of the CI lattice, also known in concept
analysis [12] as the intent lattice of a context. It is dually isomorphic to the
concept lattice of the same context (in data mining terms, the lattice of all pairs
(tidset, itemset) where both are closed and mutually corresponding). We shall
use here the latter structure as visualization basis hence the effective order on
our drawings is ⊇ rather than ⊆. In Figure 1, (a) and (b) depict the concept
lattice of dataset D and its iceberg part, respectively.

As we tackle here the computation of an FG-decorated iceberg, i.e. an ice-
berg lattice where generators are explicitly associated to their closure (see also
Figure 1 (c)), existing approaches for related tasks are of interest. In the data
mining field, FCIs together with associated FGs have been targeted by a growing
set of levelwise FCI-miners such as Titanic [3], A-Close [14], etc. In contrast, the
only case of mining FCIs with precedence that we are aware of is Charm-L [5].
The research in concept analysis algorithms has put the emphasis on the set of
concepts, or CIs, and less so on precedence (see [6] for a good coverage of the
topic). Few methods also compute the generators [7,8], whereas focused proce-
dures retrieve precedence from the concept set, as in [9]. However, all but few
concept analysis methods perform at least part of the computation transaction-
wise, which makes them impractical for large datasets.

Yet a close examination of the most relevant approaches, i.e. those computing
generator-decorated lattices such as in [7], reveals an interesting property that we
shall exploit in our own method. In fact, as the latter paper indicates, from the
set of all closures and their precedence, one may easily compute the generators
for each closure.

The key notion here is the blocker of a family of sets (equivalent to a hyper-
graph transversal as we show below). Thus, given a ground set X and a family of
subsets X ⊆ ℘(X), a blocker of X is a set Z ⊆ X which intersects every member
thereof to a non-empty result (∀T ∈ X , Z ∩ T �= ∅). A minimal blocker is the
one which admits no other blocker as a proper subset. Blockers are brought into
the closure lattice using the associated faces, i.e. the differences between two
adjacent closures within the lattice. Formally, given two CIs X1 and X2 of a
dataset such that X1 ≺ X2, their associated face is F = X2 \X1.

Example. Consider the closure lattice in Figure 1 (c). In a node, it depicts the
corresponding CI, its support and the list of its generators. Let us consider the
bottom concept with the closure ABCDE. It has two predecessors, thus its faces
are: F1 = ABCDE \AB = CDE and F2 = ABCDE \ACDE = B.

A basic property of the generators of a CI X states that they are the minimal
blockers of the family of faces associated to X [7]:

Theorem 1. Assume a CI X and let F = {F1, F2, . . . , Fk} be its family of
associated faces. Then a set Z ⊆ X is a minimal generator of X iff X is a
minimal blocker of F .
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Fig. 2. A hypergraph H, where V = {A, B, C, D} and E = {A, BC, ACD}

Example. The minimal blockers of the family {CDE, B} are {BC, BD, BE},
which is exactly the set of minimal generators of ABCDE (see Figure 1 (c)).

From Theorem 1, Pfaltz devised a method for computing the generators of a
closed set from its predecessors in the lattice [15]. Although the precedence links
are assumed as input there, their computation, as indicated above, requires ex-
pensive manipulations of tidsets. Thus, even though the algorithm itself employs
scalable operations, its input is impossible to provide at low cost.

However, this apparent deadlock can be resolved by transposing the problem
setting into the more general framework of hypergraphs and transversals.

2.2 Hypergraphs and Their Transversal Graphs

A hypergraph [16] is a generalization of a graph, where edges can connect arbi-
trary number of vertices.

Definition 2 (hypergraph). A hypergraph is a pair (V ,E) of a finite set
V = {v1, v2, . . . , vn} and a family E of subsets of V . The elements of V are
called vertices, the elements of E edges. A hypergraph is simple if none of its
edges is contained in any other of its edges, i.e. ∀Ei, Ej ∈ E : Ei ⊆ Ej ⇒ i = j.

Example. The hypergraph H in Figure 2 is not simple because the edge A is
contained in the edge ACD.

A transversal of a hypergraphH is a subset of its vertices intersecting each edge of
H. A minimal transversal does not contain any other transversal as proper subset.

Definition 3 (transversal). Let H = (V, E) be a hypergraph. A set T ⊆ V is
called a transversal of H if it meets all edges of H, i.e. ∀E ∈ E : T ∩ E �= ∅. A
transversal T is called minimal if no proper subset T ′ of T is a transversal.

Clearly, the notion of (minimal) blocker in the work of Pfaltz [7] is equivalent
to the notion of (minimal) transversal.

Example. The hypergraph H in Figure 2 has two minimal transversals: AB
and AC. The sets ABC and ACD are transversals but they are not minimal.

Definition 4 (transversal hypergraph). The family of all minimal transver-
sals of H constitutes a hypergraph on V called the transversal hypergraph of H,
which is denoted by Tr(H).
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Example. Considering the hypergraph H in Figure 2, Tr(H) = {AB, AC}.

An obvious property of Tr(H) is that it is necessarily simple. Next, a duality
exists between a simple hypergraph and its transversal hypergraph [16]:

Proposition 1. Let G and H be two simple hypergraphs. Then G = Tr(H) if
and only if H = Tr(G).

Consequently, computing twice the transversal hypergraph of a given simple
hypergraph yields the initial hypergraph.

Corollary 1 (duality). Let H be a simple hypergraph. Then Tr(Tr(H)) = H.

Example. Consider the following simple hypergraph: G = {A, BC}. Then, G′ =
Tr(G) = Tr({A, BC}) = {AB, AC}, and Tr(G′) = Tr({AB, AC}) = {A, BC}.

From a computational point of view, the extraction of Tr(G) from G is a tough
problem as the former can be exponentially larger than the latter. In fact, the ex-
act complexity class of the problem is still not known [10]. Yet many algorithms
for the task exist and perform well in practice since the worst case rarely oc-
curs. For instance, an incremental algorithm due to Berge [16] computes the
Tr(G) as the final member of a sequence of hypergraphs, each representing
the transversal hypergraph of a subgraph of G. It is noteworthy that the al-
gorithm in [7] follows a similar pattern in computing minimal blockers of a set
family.

3 The Snow Algorithm

Snow computes precedence links on FCIs from associated generators by exploit-
ing the duality with faces.

3.1 Underlying Structural Results

As indicated in the previous section, a minimal blocker of a family of sets is an
identical notion to a minimal transversal of a hypergraph. This trivially follows
from the fact that each hypergraph (V ,E) is nothing else than a family of sets
drawn from ℘(V ). Now following Theorem 1, we conclude that given a CI X , the
associated generators compose the transversal hypergraph of its family of faces
F seen as the hypergraph (X ,F).

Next, further to the basic property of a transversal hypergraph, we conclude
that (X ,F) is necessarily simple. In order to apply Proposition 1, we must also
show that the family of generators associated to a CI, say G, forms a simple
hypergraph. Yet this holds trivially due to the definition of generators. We can
therefore advance that both families represent two mutually corresponding hy-
pergraphs.
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Table 1. Input of Snow on dataset D by min_supp = 1

FCI (supp) FGs
AB (2) AB
ABCDE (1) BE; BD; BC
A (3) A

FCI (supp) FGs
B (3) B
ACDE (2) E; C; AD
D (3) D

Property 1. Let X be a closure and let G and F be the family of its generators
and the family of its faces, respectively. Then, for the underlying hypergraphs it
holds that Tr(X,G) = (X,F) and Tr(X,F) = (X,G).

Example. Let us again consider the bottom concept in Figure 1 (c) with
ABCDE as its CI. It has three generators: BC, BD, and BE. The transversal
hypergraph of the generator family is Tr({BC, BD, BE}) = {CDE, B}. That
is, it corresponds exactly to the family of faces as computed above.

3.2 The Algorithm

The Snow algorithm exploits Property 1 by computing faces from generators.
Thus, its input is made of FCIs and their associated FGs. Several algorithms can
be used to produce this input, e.g. A-Close [4], Titanic [3], Zart [17], Eclat-Z [18],
etc. Table 1 depicts a sample input of Snow.

On such data, Snow first computes the faces of a CI as the minimal transver-
sals of its generator hypergraph. Next, each difference of the CI X with a face
yields a predecessor of X in the closure lattice.

Example 1. Consider again ABCDE with its generator family {BC, BD, BE}.
First, we compute its transversal hypergraph: Tr({BC, BD, BE}) = {CDE, B}.
The two faces F1 = CDE and F2 = B indicate that there are two predeces-
sors for ABCDE, say Z1 and Z2, where Z1 = ABCDE \ CDE = AB, and
Z2 = ABCDE \B = ACDE. Application of this procedure for all CIs yields
the entire precedence relation for the CI lattice. �

The pseudo code of Snow is given in Algorithm 3.2. As input, Snow receives a set
of CIs and their associated generators. The identifyOrCreateTopCI procedure
looks for a CI whose support is 100%. If it does not find one, then it creates it by
taking an empty set as the CI with 100% support and a void family of generators
(see Figure 1 (c) for an example). The getMinTransversals function computes
the transversal hypergraph of a given hypergraph. More precisely, given the
family of generators of a CI X , the function returns the family of faces of X . It
is noteworthy that any algorithm for transversal computation in a hypergraph
would be appropriate here. In our current implementation, we use an optimized
version of Berge’s algorithm henceforth referred to as BergeOpt that we do
not present here due to space limitations. The getPredecessorCIs function
calculates the differences between a CI X and the family of faces of X . The
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Algorithm 1 (Snow):

Description: build iceberg lattice from FCIs and FGs
Input: a set of CIs and their associated generators

1) identifyOrCreateTopCI(setOfFCIsAndFGs);
2) // find the predecessor(s) for each concept:
3) for all c in setOfFCIsAndFGs {
4) setOfFaces ← getMinTransversals(c.generators);
5) predecessorCIs ← getPredecessorCIs(c.closure, setOfFaces);
6) loop over the CIs in predecessorCIs (p) {
7) connect(c, p);
8) }
9) }

function returns the set of all CIs that are predecessors of X . The connect
procedure links the current CI to its predecessors.

For a running example, see Example 1.

3.3 Experimental Results

The Snow algorithm was implemented in Java in the Coron data mining plat-
form [19].3 The experiments were carried out on a bi-processor Intel Quad Core
Xeon 2.33 GHz machine with 4 GB RAM running under Ubuntu GNU/Linux.
All times reported are real, wall clock times.

For the experiments, we used several real and synthetic dataset benchmarks.
Database characteristics are shown in Table 2 (top). The chess and connect
datasets are derived from their respective game steps. The Mushrooms database
describes mushrooms characteristics. These three datasets can be found in the
UC Irvine Machine Learning Database Repository. The pumsb, C20D10K, and
C73D10K datasets contain census data from the PUMS sample file. The syn-
thetic datasets T20I6D100K and T25I10D10K, using the IBM Almaden genera-
tor, are constructed according to the properties of market basket data. Typically,
real datasets are very dense, while synthetic data are usually sparse.

Table 2 (bottom left and right) provides a summary of the experimental re-
sults. The first column specifies the various minimum support values for each
of the datasets (low for the sparse dataset, higher for dense ones). The second
and third columns comprise the number of FCIs and the execution time of Snow
(given in seconds). The CPU time does not include the cost of computing FCIs
and FGs since they are assumed as given.

As can be seen, Snow is able to discover the order very efficiently in both
sparse and dense datasets. To explain the reason for that, recall that the only

3 http://coron.loria.fr

http://coron.loria.fr
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Table 2. Top: database characteristics. Bottom: response times of Snow.

database # records # non-empty # attributes largest
name attributes (in average) attribute

T20I6D100K 100,000 893 20 1,000
T25I10D10K 10,000 929 25 1,000

chess 3,196 75 37 75
connect 67,557 129 43 129
pumsb 49,046 2,113 74 7,116

Mushrooms 8,416 119 23 128
C20D10K 10,000 192 20 385
C73D10K 10,000 1,592 73 2,177

min_supp # concepts Snow
(including top) (finding order)

T20I6D100K
0.75% 4,711 0.11
0.50% 26,209 0.36
0.25% 149,218 3.24

T25I10D10K
0.40% 83,063 1.07
0.30% 122,582 2.73
0.20% 184,301 4.48
chess
65% 49,241 0.85
60% 98,393 1.77
55% 192,864 3.95

connect
65% 49,707 0.54
60% 68,350 0.78
55% 94,917 1.82

min_supp # concepts Snow
(including top) (finding order)

pumsb
80% 33,296 1.95
78% 53,418 4.10
76% 82,539 7.08

Mushrooms
20% 1,169 0.05
10% 4,850 0.17
5% 12,789 0.47

C20D10K
0.50% 132,952 3.04
0.40% 151,394 4.37
0.30% 177,195 4.29

C73D10K
65% 47,491 1.51
60% 108,428 3.97
55% 222,253 10.13

computationally intensive step in Snow is the transversal hypergraph construc-
tion. Thus, the total cost heavily depends on the efficiency of that step. Further-
more, to find out why the underlying algorithm BergeOpt performs so well, we
investigated the size of its input data. Figure 3 shows the distribution of hyper-
graph sizes in the datasets T20I6D100K, Mushrooms, chess, and C20D10K.4
Note that we obtained similar hypergraph-size distributions in the other four
datasets too. Figure 3 indicates that most hypergraphs only have 1 edge, which
is a trivial case, whereas large hypergraphs are relatively rare. As a consequence,
BergeOpt and thus Snow perform very efficiently.

We interpret the above results as an indication that the good performance of
Snow is independent of the density of the dataset. In other terms, provided that
the input hypergraphs do not contain too many edges, i.e. there are only few
FGs per FCIs, the computation is very fast. A natural question arises with this

4 For instance, the dataset T20I6D100K by min_supp = 0.25% contains 149,019
1-edged hypergraphs, 171 2-edged hypergraphs, 25 3-edged hypergraphs, 0 4-edged
hypergraphs, 1 5-edged hypergraph, and 1 6-edged hypergraph.
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Fig. 3. Distribution of hypergraph sizes

observation: does the modest number of FGs in each class hold for all realistic
datasets in the literature? If not, could one profile those datasets which meet
this condition?

4 Conclusion

The computation of precedence of FCIs is a challenging task due to the poten-
tially huge number of these. Indeed, as most of the existing algorithms rely on
dimensions that may grow rapidly, they remain impractical for large datasets.

We presented here an approach for elegantly solving the problem starting from
a rather common mining output, i.e. FCIs and their FGs, which is typically pro-
vided by levelwise FCI-miners. To that end, we reverse a computation principle
initially introduced by Pfaltz in closure systems by translating it beforehand
within the minimal transversal framework of hypergraph theory. Although the
cost of the transversal hypergraph problem is potentially non-polynomial, the
contributed algorithm, Snow, proved to be highly efficient in practice largely due
to the low number of FGs associated to an FCI.
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Based on this observation, we claim that Snow can enhance in a generic yet
efficient manner any FCI/FG-miner, thus transforming the latter into an iceberg
lattice constructor. Beside the possibility to compute valuable association rule
bases from its output, the resulting method could also compete on the full-fledged
concept lattice construction field.

On the methodological side, our study underlines the duality between gener-
ators and order w.r.t. closures: either can be used in combination with FCIs to
yield the other one. It rises the natural question of whether FCIs alone could
be used to efficiently retrieve both precedence and FGs. Conversely, it would be
interesting to examine whether FCIs can in turn be easily computed from order
and generators, yet this is more of a discrete mathematics challenge rather than
data mining concern.
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Abstract. Since its inception, the field of machine learning has seen
the advent of several learning paradigms, designed to frame the issues
central to the learning activity, provide effective learning methods, and
investigate the power and limitations inherent to the process of success-
ful learning. In this article, we propose a formalization that underlies
the key concepts of many such paradigms and discuss their relevance to
scientific discovery, with the aim of assessing what scientists can expect
from machines designed to assist them in their quest for the discovery of
valid laws. We illustrate the formalization on several variations of a card
game, and highlight the differences that paradigms impose on learners,
as well as the assumptions they make on the nature of the learning pro-
cess. We then use the formalization to describe a multi-agent interaction
protocol, that has been inspired by these paradigms and that has been
validated recently on some groups of agents. Finally, we propose exten-
sions to this protocol.

Keywords: Logic, Machine learning, Interaction for Knowledge
Discovery.

Introduction

Since machine learning emerged as a new field almost 50 years ago, several learn-
ing paradigms have been proposed with two main objectives: frame the very na-
ture of the learning process, both qualitatively and quantitatively, and provide
effective algorithms that can be implemented for specific learning tasks. Identi-
fication in the limit [1], query learning [2], and PAC -learning [3] are some of the
paradigms that have had strong impact on the machine learning community. All
those paradigms propose a different way of modeling reality, suggest a different
form of interaction between a learner and its environment, and put forward differ-
ent criteria of success for the learning process. We propose in Section 1 a logical
formalization suitable to subsume these paradigms and discuss the relevance of
these paradigms in the context of scientific discovery, and more precisely, discuss
how the paradigms can provide a blueprint to assist practicing researchers with
learning machines. We illustrate the formalization on several variations of a card
game, and highlight how different paradigms affect the rules of the game and
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rely on different assumptions about how learners and the environment should
be modeled. In particular, we distinguish between passive learning (Section 2)
and active learning (Section 3), and emphasize their limits in the context of
scientific discovery. We then use the formalization to reformulate in Section 4
a multi-agent interaction protocol inspired both by these paradigms and by the
epistemology of Karl Popper [4]. This protocol has also been implemented under
the form of card game and has been recently validated on some groups of agents
in [5]. Finally, we propose extensions to this protocol.

1 Formal Basis

All problems to be considered will be based on an underlying abstract repre-
sentation of some form of reality, which is as simple and intuitive as possible
but rich enough to illustrate the various aspects of scientific discovery that we
want to discuss in this paper. We take every possible form of reality to be an
infinite sequence of cards taken from the classical deck of 52 cards, where ev-
ery card can occur infinitely many times. Our representation of a sequence of
cards is based on a logical language that has only two function symbols, namely
a constant 0 and a unary function symbol s. The term obtained from 0 by n
successive applications of s is denoted n, and intuitively refers to the nth card
in the sequence.

To describe a card, we use some of the observational predicates, namely, the
members of both sets of unary predicate symbols below:

Prdsuit(V) = {hearts, spades, clubs, diamonds}, and

Prdrank(V) = {ace, two, ..., ten, jack, queen, king}
This vocabulary is rich enough to describe any possible sequence of cards. For

instance, the sequence that starts with the queen of hearts, followed by the king
of spades, followed by the third of diamonds, ..., is represented by the theory

queen(0), hearts(0), king(1), spades(1), third(2), diamonds(2), ...

More generally, every possible sequence can be identified with a theory of the
kind defined next:

Definition 1 (Possible Games). We call possible game any theory T such
that:

– for all n ∈ N, T contains one and only one member of Prdrank(V),
– for all n ∈ N, T contains one and only one member of Prdsuit(V),
– T contains no other formula.

Many possible games have no finite equivalent. Of course some sequences enjoy
a finite representation. For instance, the sequence consisting of nothing but the
queen of hearts is described by the formula

∀x[hearts(x) ∧ queen(x)]. (1)
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When the problem is to discover the underlying possible game, games with a
finite representation are clearly of special interest. However this does not mean
that we should restrict ourselves to the class of possible games whose description
is finite. Indeed, we also want to look at classification problems, where the aim
is to determine whether the underlying possible game has some property i.e.,
belongs to a particular class. In that case, what is of special interest is that the
class be finitely describable. The difference between finitely and non-finitely de-
scribable classes can be illustrated in terms of complexity measure. For instance,
[6], [7] proposed a formal framework to measure the level of desorder in a sys-
tem. Intuitively, a random sequence of bytes can only be enumerated whereas
an organised one can be compressed. The size of the smaller program able to
generate this sequence then represents an acceptable approximation of its com-
plexity. Finitey describable classes of possible games are those whose description
can be compressed thanks to their organisation.

Both identification and classification will be discussed at length in the remain-
der of the paper. For the moment, let us focus on the finite description property.
We shall start by providing a better intuition for the possible games that are
finitely describable. For instance, the sequence which starts with ten queens of
hearts, and then consists of nothing else but the king of spades, is captured by
the following finite description of that possible game:

{queen(n), hearts(n) | n < 10} ∪ {king(10), spades(10)} ∪
{∀x[(king(x)→ king(s(x))) ∧ (spades(x) → spades(s(x)))]} (2)

It is not hard to see that the class of finitely describable possible games is
precisely the class of card sequences that, at some point, become cyclic. For
instance, the class of possible games that describes sequences that start with a
finite subsequence of queens of hearts, of arbitrary length, followed by nothing
but the king of spades, is finally described by the following finite theory

{∀x[(king(x) ∧ spades(x)) ∨ (queen(x) ∧ hearts(x))],
∃xking(x), ∀x[king(x) → king(s(x))]} (3)

When it comes to classification and describing properties, this minimal language
captures classes of possible games that at some point, have a cyclic property.
As an example, the class of possible games describing sequences where a queen
occurs in any subsequence of three successive cards is equivalent to the formula

∀x[queen(x) ∨ queen(s(x)) ∨ queen(s(s(x)))].

On the other hand, with the current set of predicate symbols, we cannot
define the class of sequences where the queen of hearts alternates with the king
of spades with an arbitrary sequence of cards between an occurrence of a queen of
hearts and the next occurrence of the king of spades, and the other way around.
We need to extend our minimal vocabulary to represent this kind of sequencial
or temporal organisation. For instance, this class becomes finitely describable if
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we enrich the vocabulary with a new binary predicate symbol, <, interpreted as
the strict order between natural numbers:

{∃x[queen(x) ∧ hearts(x)],
∀x[(queen(x) ∧ hearts(x)) → ∃y(x < y ∧ king(y) ∧ spades(y))],
∀x[(king(x) ∧ spades(x)) → ∃y(x < y ∧ queen(y) ∧ hearts(y))]} (4)

We now consider vocabularies that extend the original vocabulary (consist-
ing of 0, s, and the observational predicate symbols) with any number (possibly
none) of predicate symbols whose interpretation over the set of possible games
is fixed. We call these extra predicate symbols theoretical predicates. Such pred-
icates enrich the expressive power as the < symbol just discussed. Other the-
oretical predicates could just provide notational convenience, for instance with
red(x) as an abbreviation for hearts(x) ∨ diamonds(x).

We assume that every theoretical predicate is decidable as defined in Defini-
tion 2.

Definition 2. Let V be a vocabulary consisting of all observational predicate
symbols plus some number of theoretical predicate symbols. We say that V is
decidable just in case for all k ∈ N, n1, . . . , nk ∈ N, k-ary theoretical predicates
q and possible games G, the truth of q(n1, . . . , nk) in G is determined by the truth
in G of all formulas of the form p(nj) where 0 ≤ j ≤ k and p is an observational
predicate.

Equivalently, given a theoretical k-ary predicate symbol q, the atomic formula
q(x1, . . . , xn) is an abbreviation for a boolean combination ϕ of formulas of the
form p(x) where p is an observational predicate symbol, and x is one of x1, . . . ,
xn; ϕ amounts of a definition of q. Note that ϕ could contain a subformula that
itself defines another theoretical predicate which would simplify the definition of
q, which instead of being defined from observational predicates only, would be
defined of possibly both observational and theoretical predicates.

Intuitively, theoretical predicates define relationships between cards that only
depend on what these cards are and not on other cards that might or might not
occur in the sequence; theoretical predicates have a definitional character.

Even though we accept and promote the use of a rich vocabulary, we want to
guarantee that any possible game or class of possible games respect the natural
ordering of the sequence of cards. This means that if we want to claim that
the tenth card is a queen of hearts, that should only be based on the tenth
card or on any card in the sequence that occurs before. For this purpose, we
consider special kind of logic programs that we call iterative logic programs. We
first define a general notion of logic program (Definition 3) and then specialize
it to iterative logic programs (Definition 4).

Definition 3. A logic program is a finite set of rules (over a decidable
vocabulary) whose heads are atomic formulas, whose bodies are positive formu-
las, i.e., are built from atomic formulas using conjunction, disjunction, existen-
tial quantification and universal quantification, and such that all variables that
occur free in the body of a rule also occur in the head of that rule.
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All free variables in any rule of a logic program are implicitly universally quan-
tified. It might seem that being able to only generate atoms is too restrictive. The
use of theoretical predicates allows us to circumvent this apparent restriction.
Suppose for instance that we want to predict that the nth card is either hearts
or diamonds depending on the previous cards. We cannot use a rule whose head
is hearts(x) ∨ diamonds(x), but we can work with a vocabulary that contains
a theoretical predicate red with its intended meaning that can then be used in
the heads of the logic program.

Definition 4. A logic program P is said to be iterative iff the following holds.
Consider a rule r ∈ P with head ℘(x1, . . . , xk) and body ψ (where no variable
except possibly x1, . . . , xk occur free in ψ). Let n1, . . . , nk ∈ N be given and let
G be a possible game. Then the truth of ψ[n1/x1, . . . , nk/xk] in G is determined
by the truth of all formulas of the form ℘(m) where m < max(n1, . . . , nk) and ℘
is an observational predicate symbol.

For instance, an iterative logic program could contain the following rule, which
expresses that a card is a spades provided that it is a king and is preceded by
at least one hearts:

(∃y[y < x ∧ hearts(y)] ∧ king(x))→ spades(x)

Given a logic program P , we denote by [P ] the ⊆-minimal set of all closed
atoms that can be generated from P following the following process. Consider
a rule r ∈ P with head ℘(x1, . . . , xk) and body ψ. Let n1, . . . , nk ∈ N be given,
Assume that every possible game that is a model of [P ] is also a model of
ψ[n1/x1, . . . , nk/xk]. Then ℘(n1, . . . , nk) belongs to [P ].

A key property of iterative logic programs is given by the following property:

Property 1. Let P be an iterative logic program over a (decidable) vocabulary
V , then [P ] is a recursive set.

This property follows from:

– the fact that atomic formulas built from a theoretical predicate symbol can
be replaced by formulas built from observational predicate symbols only;

– the fact that for every rule ψ → ℘(x1, . . . , xk) of an iterative logic pro-
gram and every n1, . . . , nk ∈ N, ψ[n1/x1, . . . , nk/xk] can be mechanically
transformed into a quantification free sentence in which all terms belong to
{m | m ≤ max(n1, . . . , nk)}.

Since [P ] consists of nothing but atomic sentences, [P ] is always consistent. But
[P ] can be unsatisfiable in the sense that it has no intended interpretation, for
instance because it contains, for some n ∈ N, two distinct formulas of the form
℘1(n) and ℘2(n) where ℘1 and ℘2 both belong to Prdrank or both belong to
Prdsuit. Or for another example, if [P ] contains both red(10) and spades(10),
then P is also unsatisfiable with respect to our class of intended interpretations.
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An iterative logic program is said to be equivocal iff it has a model in the class
of possible games W , and it is said to be univocal iff it has exactly one model in
W . The next property follows from the argument described after Property 1.

Property 2. Both univocity and equivocity are co-semi-decidable properties of a
logic program.

To end this section, we describe a class of univocal logic programs. Let <suit

and <rank be two arbitrary order relations on Prdsuit(V) and Prdrank(V), re-
spectively. For instance, let <suit and <rank be defined as follow:

– hearts <suit diamonds <suit clubs <suit spades.
– ace <rank two <rank · · · <rank ten <rank jack <rank queen <rank king.

Any iterative program of the following type guarantees the univocity property:

ϕ1(x) → hearts(x)
¬ϕ1(x) ∧ ϕ2(x) → diamonds(x)

¬ϕ1(x) ∧ ¬ϕ2(x) ∧ ϕ3(x) → clubs(x)
¬ϕ1(x) ∧ ¬ϕ2(x) ∧ ¬ϕ3(x) ∧ ϕ4(x) → spades(x)

and similarly for predicates in Prdrank(V).

2 Passive Learning

The notion of univocal program is what we need to illustrate the problem of
identification in the limit developed in [1].

A so called game master chooses a possible game G which can be described
by a univocal program. At each step n, the game master reveals the card n, so
that the learner L discovers each card one by one. The aim of the learner is to
find, among a infinite set of univocal programs H = {P0,P1, . . . } a hypothesis
PG that is equivalent to G. So after discovering a new card n, L proposes, if
it is consistent, a program PH ∈ H that extends the sequence 0, 1, . . . , n, i.e.
[PH] ⊇ {℘1(0) ∧ ℘2(0) ∧ ... ∧ ℘1(n) ∧ ℘2(n)}, ℘1 ∈ Prdsuit(V), ℘2 ∈ Prdrank(V)
until it eventually converges toward a correct hypothesis. Note that this kind of
learning belongs to the paradigm of function learning where presenting positive
data is equivalent to presenting both positive and negative data since the latter
can be retrieved from the former.

Proposition 1. The class of univocal programs is identifiable in the limit.

This is consequence from Property 2 which allows to apply the usual enumeration
technique.

Every incorrect hypothesis is refutable in the limit, so each step of the game
might unvalidate PH. On the other hand, at no step in the game can L have
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a proof that its current hypothesis is correct. An acceptable strategy for this
game would then be to arbitrarily order the set of hypotheses and select, every
time when a new hypothesis is needed, the next one which is consistent with the
current knowledge concerning G.

We now provide an illustration of this game. Let G be the possible game that
describes the sequence alternating the four of spades with the queen of hearts,
starting with the former, until the 120th card, after which the queen of spades
is repeated an infinitely often. Let H contain the following programs:

– P0: every card in the sequence is the four of spades,
– P1: every card in the sequence is the queen of hearts,
– P2: the sequence alternates between the four of spades and the queen of

hearts, starting with the former,
– P3: the sequence starts with 60 repetitions of the subsequence “four of

spades, queen of hearts”, then repeats the queen of spades infinitely often
. . .

After the first card is revealed, L can propose any of the programs inH except
P1, for example P0 . After the second card is revealed, P0 no longer stands as a
valid hypothesis and L has to change his mind, then proposing either P2 or P3,
for example P2. The identification process is said to be successful if L changes
hypotheses finitely often.

3 Active Learning

We illustrated passive learning with a game in which a learner has to exactly
identify a univocal program describing an infinite sequence which is revealed to
it one card after another. We shall now illustrate active learning with a classifi-
cation game in which the learner has to exactly identify an equivocal program
by querying an oracle to test its hypotheses.

Let Ptarget be an equivocal logic program describing a set Wtarget ⊆ W of
possible games sharing certain properties,W being the set of all possible games,
and let H be a possibly infinite set of equivocal programs.

At each step, L is allowed to make a query to an oracle among the types of
queries introduced and studied in [2,8]:

– Membership: the input is a possible game X ∈ W , and the answer is true if
X ∈ Wtarget, or false if X is a counterexample.

– Equivalence: the input is a set WH ∈ W of possible games, and the answer
is true if WH ≡ Wtarget, or a counterexample X ∈ WH∆Wtarget.

– Subset : the input is a set WH ∈ W of possible games, and the answer is true
if WH ⊆ Wtarget or a counterexample X ∈ WH −Wtarget.

– Superset : the input is a set WH ∈ W of possible games, and the answer is
true if WH ⊇ Wtarget, or a counterexample X ∈ Wtarget −WH.

The classification is said to be successful if after a finite number of queries
and data acquisition, L converges toward a program PH ∈ H such that PH ≡
Ptarget.
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The classification paradigm models the interaction between the learner and its
environment in ways that differ quite substantially from the paradigm of iden-
tification in the limit, most notably through the use of queries that allow the
learner to play an active role during the learning process. Indeed, the learner
does not wait for some useful information to be brought to his knowledge . He
can now select the most informative piece of data determined by his current
hypothesis and an exploration behavior. However, according to our general
definition of possible games, all these queries are co-semi-decidable. Supposing
that L has access to an oracle able to answer equivalence, subset, and superset
queries presupposed that this oracle has computational capabilities greater than
a Turing machine. Hence membership queries are not really relevant, since
we cannot decide whether an equivocal program is actually univocal, namely,
describes a unique possible game. This limitation reflects the type of difficul-
ties encountered in the context of scientific discovery in which any object has
a potentially infinite representation. Scientists lead finite experiments to gather
information, and generalize observations to formulate theories whose proofs,
according to [4], are out of reach. In [9], we illustrated with the game Eleu-
sis+Nobel a possible restriction of membership queries to finite possible games.
We also bypassed the problem of answering equivalence queries by distributing
it on the community of players, in a social game of publication and refutation
of conjectures. Encouraging results concerning the epistemological and didactic
aspects of this game were presented in [5]. We now formally reformulate this
game in section 4, introduce the use of subset and superset queries, and discuss
the relevance of the distributed resolution of queries.

4 Interactive Learning and Scientific Discovery

Let us illustrate why Gold’s paradigm is not suited to the context of scientific dis-
covery. This paradigm describes a scientist who observe his environment and try
to understand it, but who is unable to move. His perception of his environment is
then limited to a unique point of view, and is constrained by the occurence of the
different phenomena. On the contrary, active learning could intuitively describe
the scientific method consisting in selecting the most informant piece of data, and
the proof of the theory built on top of this information: a scientist design experi-
mentations, which are limited in space and time, to reproduce and study a given
phenomenon. The theory built on top of the gathered data is then published and
submitted to a pair validation. We now propose to include this broad view of Sci-
ence in a game that could illustrate how we learn from each other.

4.1 Reformulation of Eleusis+Nobel and Discussion

Players are allowed to make experiments by asking the game master if a particular
subsequence X is consistent with Ptarget or not. A positive result does not guar-
antee that X is not an initial segment of a possible game outside Wtarget, but a
negative result guarantees that no possible game can consistently be created start-
ing from X and therefore invalidates all hypotheses consistent with X . Instead of
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supposing the existence of an oracle such as the one defined for active learning, we
allow players to publish conjectures i.e., to ask the community to refute them. We
define three types of conjectures according to the definitions of these three types
of queries, all of which are refutable by exhibiting a counterexample. Publishing a
conjecture does not guarantee any answer. In fact, a positive answer will usually
not be known to be correct, but a counterexample will eventually be found if one
exists. As with identification in the limit, the learner will never have any guarantee
that a hypothesis is correct, but if a hypothesis is incorrect then a counterexample
will occur at some point in the game.

The main difference with identification in the limit is then the use of exper-
iments, which allow learners to explore the set of finite sequences at their will,
on the way using exploration strategies, heuristics, and background knowledge.
To ensure that uncorrect conjectures will be refuted, we create a social dynamic
as usually done in game theory since [10]. Note that several target programs
are made available so that learners can organize their experimentation time and
switch from one problem to another. We then define a gain function such that
each player has to optimize his or her personal gain either by publishing new
conjectures, or by trying to refute existing ones. For instance, according to the
gain function used in [9], players win P =1 point for publishing a conjecture,
and R =2 points for finding a counterexample to such a query, loosing the same
amount of points when one of their own conjectures is refuted. Note that only
equivalence conjectures were implemented for our experimentations. Despite its
simplicity, this gain function allows one to observe three different behaviors when
humans play: altruists publish often, regardless of refutation risks, opportunists
never publish and only try to refute others conjectures when they are published,
and careful players seem to define a reasonable experimentation length before
deciding whether a conjecture (theirs or another’s) is true. Intuitively, the latter
is the richest behavior in terms of strategy and risk management, but the former
behavior ensures a constant flow between published and refuted theories. This
minimal interaction is then sufficient to create a process of classification in the
limit. This game can be adapted to a more popperian conception of scientific
discovery by introducing the use of subset and superset queries as described in
the following section.

4.2 Extensions

According to Popper [4], theories should be evaluated following their capacity
to resist refutation. Several theories could then cohabit at the same time, even
if they are contradictory, until some of them get refuted. How do we cater for a
large range of theories in our framework? A natural generalization of the notion
of equivocal programs is obtained by taking boolean combinations of equivocal
programs. We can illustrate the elimination of inconsistent hypotheses as follows.
The learner’s initial hypothesis can be formulated as the disjunction

∨
P∈HP of

all programs inH, since no data is available to refute any of them when the game
begins. After each experiment, the learner can then remove every inconsistent
program from the disjunction and eventually converge towards a correct one or
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towards one that deserves publication. By allowing the use of subset and superset
conjectures, we can also define publications as boolean combinations of possibly
contradictory conjectures, whereas restricting publications to equivalence con-
jectures implied refuting the existing one before publishing any alternative. The
gain function should then be adapted to reflect that the longer a theory remains
unrefuted, the more credit it gets. For instance, instead of earning P points only
when they publish a conjecture, learners could earn f(P ) points for each effec-
tive experiment that does not refute the conjecture. Refuting a conjecture would
then be rewarded according to the credit it awarded before it was refuted.

Providing results concerning this extension will be the object of future work,
and the formalization we presented was necessary to clearly define the new fea-
tures that need to be implemented. As we noticed, this multi-agent declination
of learning paradigms was inspired by epistemological considerations. This inter-
action protocol is suited to human interaction as our experimentations pointed
out, and to the human-machine interaction which was shown to be necessary in
order to assist scientific discovery with learning machines as introduced by [11]
and as discussed in depth in [12]. Indeed, a crucial point in scientific discovery
is the definition of new concepts , as pointed out in [13], [14] or [15] . This is
formalized in the form of the theoretical predicates introduced in Definition 2.
The vocabulary used to formulate conjectures can then be extended with new
concepts provided that there are rules which permit to derive them from already
defined concepts. The current interface to create publications, which already pro-
vides every concept used in the target rules, can then be adapted to let players
define their own concepts, and use them to easily formulate their conjectures.
Definition 2 ensures that both assistants and other players will understand the
concepts and will be able to test and eventually refute any incorrect conjecture.

5 What about PAC -Learning?

In the case of passive learning, a distribution law can determine the probabil-
ity of observing each piece of data. [3] introduces a notion of approximation to
reflect the fact that learning might not be exact, either because of noise in the
data, or simply because exact identification is not required. A success criteria for
a Probably Approximatively Correct learning is then defined, that relies on these
notions of distribution and approximation, and on a reliability criterion. Essen-
tially, PAC -learning involves arbitrarily bounded notions, whereas the models
of reality we defined in section 1 are infinite. For this reason, our formalization
does not seem adapted to the PAC paradigm. However, it is worth describing
what restrictions we need to impose to our formalization in order to illustrate
PAC -learning, since it is widely used in the community.

Consider the canonical probability distributionD onW , where for every closed
atom ϕ1 built on a predicate symbol in Prdsuit(V), and every closed atom ϕ2

built on a predicate symbol in Prdsuit(V), p(ϕ1) = 1
4 and p(ϕ2) = 1

13 . For every
card n ∈ N, p(ϕ1(n) ∧ ϕ2(n)) = 1

52 , which provides the basis for a probability
distribution onW , similar to the usual probability measure on the Cantor space,
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except that we are dealing with a 52-branching tree rather than a 2-branching
tree. This then allows one to compute, for any pair (P1,P2) of equivocal logic
programs, the probability that a possible game be described by P1 but not by
P2, or that it be described by P2 but not by P1. In other words, this distribution
allows one to determine a similarity degree between two equivocal logic programs.

In Valiant’s formalization, finite examples are points in an n-dimensional
space. Concepts are finite sets of such points, and examples are classified as
belonging or not to a target concept. Restricting our formalization to bounded
notions, a natural class of concepts is any set of initial segments of possible games
of arbitrary length n. We can then consider a finite set X of card sequences of
length n, randomly chosen with respect to D, as our example set. If we define
the size C of Ptarget as a function of the number of formulas in Ptarget and of
the maximum size of these formulas, we now have all the ingredients needed to
work in a PAC -like paradigm. First, we randomly choose a natural number n,
then for each i < n, we randomly choose ℘1(i) and ℘2(i) according to D, with
℘1 ∈ Prdsuit and ℘2 ∈ Prdrank, therefore yielding a set S of formulas describing
these initial segments. The aim of the learner is to output a possibly equivocal
logic program PH which almost every x ∈ X is a model of, i.e., which is a good
enough approximation of Wtarget, still with respect to D, as defined next. Set

error(h) =
∑

x∈WH∆Wtarget

D(x),

where WH∆Wtarget represents the symmetric difference between the learner’s
classification and the target classification. Let ε be the approximation criterion,
and δ the reliability criterion. The classification is considered successful if the
learner proposes in time t and with probability µ ≥ 1− δ a program PH having
an error rate error(PH) < ε, and such that t is polynomial in the number of
examples, the size of the target program, ε, and δ: t = p(n, C, 1

ε , 1
δ ).

Conclusion

We studied the extent to which common machine learning paradigms are rele-
vant to the scientific method which requires the revision of description models
from the time they appear to be inconsistent or incomplete with respect to the
set of observations. To this aim, we proposed a logical formalization and used
it to point out the crucial differences between learning paradigms.

By using the notion of univocal program, we pointed out that identification in
the limit describes an infinite learning process comparable to human learning.
However, this paradigm provides the learner with a passive role which does not
not allow him to use exploration strategies and heuristics.

With the introduction of an oracle and queries, [2] greatly modifies the as-
sumptions concerning the learner who becomes an actor of his own learning.
However, using the notion of equivocal programs, we emphasized the limitations
of this paradigm as the computational capabilities required from the oracle are
difficult to simulate in the context of scientific discovery.
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We then reformulated in the proposed formalism a restriction of membership
queries to finite experimentations as well as a multi-agent distribution of equiv-
alence queries, inspired by game theory. In a popperian conception of scientific
method, this interactive learning protocol places experimental proof out of reach
of learners, and describes the refutation in the limit of uncorrect conjectures and
a social accreditation of those that resist refutation. A preliminary prototype
of this learning protocol has been implemented and has provided interesting
results [5]. The formulation of the learning protocol as it has been described in
this paper suggests several extensions that reflect on the formation of scientific
theories. They will be the object of future work.
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Abstract. Modern digital encyclopedias contain hundreds of thousands of tex-
tual articles and multimedia elements. Alternative discovery techniques facili-
tating the visual exploration of encyclopedia knowledge spaces have recently 
received much attention. We present the results of a comparative usability 
evaluation of a two-dimensional and a three-dimensional visualization system 
integrated with the Brockhaus encyclopedia. Both systems enable visual navi-
gation of article context. Results indicate that both systems perform comparably 
and that users prefer the threedimensional visualization system.  
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1   Introduction 

Modern digital encyclopedias contain hundreds of thousands of textual articles and 
multimedia elements which constitute a knowledge space encompassing virtually all 
areas of general interest. Traditional retrieval and discovery techniques in this domain 
have included keyword search for articles and cross-reference based navigation be-
tween articles. Alternative discovery techniques facilitating the visual exploration of 
encyclopedia knowledge spaces have recently received much attention. Such tech-
niques have for example leveraged advances in knowledge visualization [1], geospa-
tial information systems [2] and semantic technologies. 

The German-language Brockhaus encyclopedia [3] provides two visualization sys-
tems enabling the visual navigation of article context. The two-dimensional “Knowl-
edge Web” visualization presents topically related articles using abstract graphical 
elements. The three-dimensional “Knowledge Space” visualization presents topically 
related articles using figurative graphical elements as visual metaphors. The manufac-
turer expects the two systems to support navigation between articles and to encourage 
an exploratory approach to the encyclopedia. We present the results of a comparative 
usability evaluation of the two systems. The objective of the evaluation was to deter-
mine which of the two systems better meets the stated expectation. 
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2   Environment 

This section introduces the application domain and outlines the scientific fields rele-
vant for the work described in this paper. First, the domain of digital encyclopedias is 
presented. Then, an introduction to Knowledge Visualization and Usability Evalua-
tion is given. These preliminaries serve to put the following discussion of systems, 
experiments and results into context. 

2.1   Digital Encyclopedia 

An encyclopedia is commonly defined as a compendium of knowledge consisting of 
articles about topics of general interest. Most general encyclopedias are primarily 
structured using an alphabetical index based on the article titles (“lemmas”). Modern 
digital encyclopedias supplement textual article content with images, audio and video 
clips and other multimedia elements. They provide search facilities based on keyword 
queries and navigation facilities based on cross-article references. 

The “Brockhaus Enzyklopaedie” [3] is an example of a modern multimedia ency-
clopedia. This German language encyclopedia contains 240,000 articles, 30,000 mul-
timedia elements and 350,000 keywords. It is the predominant encyclopedia in the 
German language domain (the famous “Duden” lexicon is published by the same 
company) and ranks among the world’s largest encyclopedias. The Brockhaus ency-
clopedia features two novel systems for the visual navigation between articles based 
on an automatically generated article context (compare section 3).  

2.2   Knowledge Visualization 

In the context of computer science, the term visualization usually denotes the use of 
visual representations in support of quantitative or qualitative analysis of information. 
Modern visualization systems rely on real-time computer graphics to display interac-
tive representations of complex information spaces. 

Information Visualization is commonly defined as the use of computer-supported, 
interactive, visual representations of abstract data to amplify cognition. Work in the 
field leverages the fact that the human visual sense is capable of rapid perception, 
transformation and classification of information. Information Visualization is charac-
terized by a clear focus on computer-supported media, abstract information, and indi-
vidual information seeking in very large information spaces. [4] 

Knowledge Visualization strives to complement and expand the focus of Informa-
tion Visualization by concentrating on the process of knowledge transfer. It proposes 
to consider the intended function of a system, the knowledge type to be transferred, 
the characteristics of the recipients and the visualization types available when design-
ing a visualization system [5]. Knowledge Visualization emphasizes the importance 
of balancing the use of visual models, metaphors and abstractions in order to optimize 
the transfer and perception of knowledge [6].  

2.3   Usability Testing 

Usability testing is commonly defined as the empirical testing of interface design with 
representative user groups. Various forms of usability tests have been proposed [7]: 
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Thinking aloud tests encourage users to verbalize thoughts while completing tasks. 
Usage studies observe the behavior of users in a natural environment. Formal experi-
ments provide quantitative data by measuring performance under controlled condi-
tions. All forms of usability testing share certain common properties [8]: The primary 
goal of any usability test is to improve usability. The composition of the test user 
group and the nature of the assigned tasks reflect the expected real-world situation. 
The test user’s actions and expressions are observed, recorded and analyzed after the 
test to discover problems and suggest solutions. 

There has been much debate about the number of users required to produce valid 
results in a usability test. Some studies suggest that five users should suffice [9]. Oth-
ers have challenged this view. Several usability tests have yielded relevant results 
with user groups containing between five and ten individuals (e.g. [10]). 

Comparative usability testing applies near-identical test conditions to two or more 
systems and analyzes test results to determine benefits and shortcomings of each 
tested system. The work presented in this paper is based on a formal experiment com-
paring two visualization systems which facilitate the navigation of encyclopedia arti-
cles. The experiment has been conducted with a group of six test users. 

3   System 

This section introduces relevant aspects of the Brockhaus Encyclopedia system. First, 
the context visualization framework integrated in the Brockhaus encyclopedia is pre-
sented. Then, the visualizations subjected to evaluation are described. Further infor-
mation on the Brockhaus Encyclopedia is available from the manufacturer [3]. 

3.1   Context Visualization 

The Brockhaus Encyclopedia provides a relevance-ranked list of related articles for 
each article. This list is commonly referred to as the article context. The context is 
precomputed based on a vector-space model [11] of article content. This model facili-
tates similarity search using terms identified as relevant by tf/idf weighting [12]. The 
results of the similarity search are filtered by a set of rules defined by domain experts 
and limited to at most 25 articles. 

The encyclopedia window provides a text-based query component and an article 
display. It also contains links to a two-dimensional context visualization denoted 
“Knowledge Web” and to a three-dimensional context visualization denoted “Knowl-
edge Space”. Both visualizations operate in separate windows and are synchronized 
with the encyclopedia window. They share several features and interaction patterns. 
For example, clicking on an article symbol navigates to the article and an option to 
keep the visualization window on top of the encyclopedia window is present in both 
visualizations. 

3.2   Knowledge Web Visualization 

The two-dimensional „Knowledge Web“ Visualization places the context origin in the 
center of the display and arranges context articles around it in a web-like manner. 
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Relevant articles are placed closer to the center. Article labels never overlap each 
other. Articles are represented by filled circles. The context origin is symbolized by a 
large white-shaded circle. Context articles are symbolized by smaller circles. Yellow 
fill color represents an article having an arbitrary topic. White fill color represents an 
article having the same topic as the context origin. A smaller, red circle within the 
circle symbolizing an article denotes the presence of multimedia content. Biographi-
cal articles are denoted by a label “P” inside the circle. Context articles are connected 
to the context origin by a radial line. Moving the mouse over a circle displays an arti-
cle abstract. Clicking on a circle navigates to the appropriate article. 

 

Fig. 1. “Knowledge Web” visualization: Context articles (small icons) arranged around the 
context origin (large central disc) 

This visualization is an example for the use of visual formalisms [11]. Diagram-
matic graphical elements (e.g. circles, lines) have been employed to generate an  
abstract visual representation. The designer has determined the semantics of the 
graphical elements based on requirements implied by the structure of article context. 
Visual formalisms can be devised for arbitrary complex knowledge spaces. However, 
a significant learning effort is required in order to interpret a visual formalism  
correctly. 
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3.3   Knowledge Space Visualization 

The three-dimensional „Knowledge Space“ Visualization places the context origin in 
the center of a disc divided into topical segments and arranges context articles around 
it. Relevant articles are placed close to the center and each article is placed within the 
segment corresponding to its topic. Articles are represented by shapes according to 
type: Cylinders represent factual articles, spheres represent geographic articles, cones 
represent biographic articles and diamonds represent articles featuring premium con-
tent. Article labels are displayed above the shapes and never overlap each other. 
Dragging the mouse horizontally spins the disc around its central axis. Dragging the 
mouse vertically adjusts zoom factor and vertical view angle. Clicking on an object 
navigates to the appropriate article. Further details are provided in [1]. 

 

Fig. 2. “Knowledge Space” visualization: Context articles (shapes on top of disc) arranged 
around the context origin (central small cone shape) in segments (disc slices) denoting topics 

This visualization is an example for the use of visual metaphors. The employed 
graphical elements have been derived from real-world equivalents (e.g. board game, 
turntable) which implicitly determine semantics. The designer has combined and 
adapted the graphical elements to match the structure of the article context. Visual 
metaphors have to be chosen carefully to convey relevant information and avoid mis-
interpretation [14]. However, analogies to the real-world equivalent enable intuitive 
interpretation and comprehension of a well-designed visual metaphor. 
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4   Evaluation 

This section reports on the comparative evaluation of the visualization systems previ-
ously described. First, the type of experiment executed is introduced. Then, the 
evaluation design is outlined, the execution of the evaluation is described and the 
evaluation results are presented. Finally, an interpretation of the evaluation results is 
attempted in the context of related findings. 

4.1   Formal Experiments 

A formal experiment is a specific type of usability evaluation which is executed in a 
controlled environment and provides objective, quantitative data by measuring per-
formance. Common performance indicators include the time required to finish a task, 
the number of tasks finished within a given period or the number of errors that oc-
curred [15]. Because formal experiments do not explain the cause for the occurrence 
of observed phenomena, they are often combined with questionnaires, interviews and 
other means of gathering qualitative feedback.  

Formal experiments can be adapted to compare two or more alternative interface 
designs. A comparative experiment can be structured according to one of the follow-
ing designs:  Between-groups experiments assign identical tasks to all users, and each 
user gets to work with one of the interfaces being tested. Within-groups experiments 
assign equivalent sets of tasks to users and users are then randomly assigned to differ-
ent pools. Each pool is confronted with all of the interfaces in different order and with 
different sets of tasks. While the between-groups design avoids undesired learning 
effects, it does not account for variations in user skill levels. Such variations are con-
trolled by the within-groups design. 

4.2   Experiment Design 

A formal experiment was defined to compare the performance of the two visualiza-
tion systems presented. The objective of the experiment was to determine which of 
the two systems is better suited to support analysis and navigation of the article con-
text. 

A between-groups design was chosen for the experiment to eliminate the effects of 
varying user skills. Two equivalent sets of tasks (denoted T1 and T2) were designed. 
There were four categories of tasks (denoted A1 to A4) with increasing level of diffi-
culty: Counting related articles of a biographical nature, finding articles belonging to 
a topical category, navigating to a specified item across one level of hierarchy and 
navigating to an item specified by contextual hints across two levels of hierarchy. For 
each category, two equivalent tasks were defined. 

Six test users (denoted U1 to U6) were recruited. The selection of users was based 
on characteristics of real-world knowledge workers likely to utilize advanced ency-
clopedia features (compare table 1). The test user group included Psychologists, De-
signers, Engineers and Researchers with a medium to high level of education. 
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Table 1. Some characteristics of test users 

 U1 U2 U3 U4 U5 U6 
Age 32 44 27 28 30 32 
Sex f f f f m m 
Sight Aid yes no yes no no yes 
Computer Experience (years) 12 8 13 10 12 18 
Computer Usage (h/week) 35 30-40 50 50-60 60 60-70 
Encyclopedia Usage (h/week) 2 1 8 1-2 1 2 
Visualization Usage (h/week) 0 0 30 3 0 2 

 
Test users were randomly assigned to one out of two test groups. The first group 

(denoted G1) worked on a first set of tasks in condition C1 (denoting that the two-
dimensional knowledge web was used) and continued with a second set of tasks in 
condition 3D (using the three-dimensional knowledge space). The second group (de-
noted G2) worked on a first set of tasks in condition C2 and continued with a second 
set of tasks in condition C1. To account for differences between the two task sets, the 
sets were alternated between conditions from test to test (compare table 2). 

Table 2. Permutation of users, conditions and tasks 

Group User Condition Task Set 
G1 U1 C1-C2 T1-T2 
G1 U2 C1-C2 T2-T1 
G1 U3 C1-C2 T1-T2 
G2 U4 C2-C1 T2-T1 
G2 U5 C2-C1 T1-T2 
G2 U6 C2-C1 T2-T1 

 
To supplement the quantitative information gathered in the formal experiment, a 

questionnaire was designed. The questionnaire contained ten questions (denoted Q1 to 
Q10) which were to be answered using a seven-point polarity profile (compare table 
3). Test users were asked to fill in the questionnaire for both conditions (C1, C2) 
immediately after participating in the experiment. 

Table 3. Questionnaire structure 

Index Question Scale (+3 to -3) 
Q1 Ease of navigating to a specified article easy - hard 
Q2 Ease of locating articles belonging to a topic easy - hard 
Q3 Readability of texts high - low 
Q4 Quality of available help good - bad 
Q5 Relevance of information in article context high – low 
Q6 Design quality of visualization high – low 
Q7 Animation quality of visualization high – low 
Q8 Interaction speed of visualization high - low 
Q9 Overall impression of system good - bad 

Q10 Would you actually use the system likely - unlikely 
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4.3   Experiment Execution 

The experiment was executed in an office room shielded from external influences. 
The experimenter conducted each session following a script which outlined welcome 
procedures, administrative issues, execution of training and test and filling of the 
questionnaire. The validity of this script was verified by a test run some days before 
the experiment was executed. 

The system features available in each condition (C1, C2) were presented by the ex-
perimenter. For both conditions, the location of the current article and of the related 
articles was pointed out. In condition C1 (the two-dimensional Knowledge Web), the 
graphical encoding of the related articles was explained. In condition C2 (the  
three-dimensional Knowledge Space), the segmentation of articles by topic and  
the meaning of article symbols was explained. In both conditions, the various means 
of interaction were presented. Users were then given time to familiarize themselves 
with the system. After users signaled their readiness to proceed, the system was reset, 
recording was started and the first task was assigned.  

 

Fig. 3. Physical setup of the experiment: Camera and microphone (left), TFT display (center), 
mirror for capturing facial expressions (right of display), input devices (in front of display) 

The experiment was conducted using a personal computer (Pentium 4, 2.0 GHz, 
2GB RAM, Windows XP SP2), a TFT display and a standard keyboard and mouse. 
Display resolution was set to 1024 by 768 pixels. A custom build of the Brockhaus 
digital encyclopedia in version 1.01 was used. 
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4.4   Experiment Results 

The results of the experiment were analyzed by processing the recorded video se-
quences and noting the time required by users for task completion. In several cases, 
users gave up on a task after some time. In other cases, users worked more than 300 
seconds on a task and the experimenter suggested moving on to the next task. Such 
incidents were noted as timeout events and not included in the analysis. 

Table 4. Time to task completion (in seconds, T denotes timeout) 

Cond. Task U1 U2 U3 U4 U5 U6 Avg. 
C1 A1 37 84 47 34 24 87 52,2 
C1 A2 46 185 142 106 28 165 112,0 
C1 A3 84 181 T 139 116 122 128,4 
C1 A4 269 T 120 56 T 141 146,5 
C2 A1 21 30 34 37 61 54 39,5 
C2 A2 62 107 18 46 30 225 81,5 
C2 A3 278 295 90 127 T T 197,5 
C2 A4 T 119 177 236 147 T 169,7 

 

 
In both conditions (C1,C2), users required significantly more time to complete 

complex navigation tasks (A3,A4) as compared to simple recognition tasks (A1,A2). 
All of the timeout events occurred in complex navigation tasks (A3,A4). It must be 
noted that a paired t-test revealed no statistically significant differences between the 
two conditions for any of the tasks. However, this statement is not meaningful for 
tasks A3 and A4 due to the number of timeouts encountered (compare table 4). 

Table 5. Questionnaire results (higher values denote positive response)  

Index Question C1(mean) C2(mean) 
Q1 Ease of navigating to a specified article +1.33 +2.17 
Q2 Ease of locating articles belonging to a topic -0.67 +2.50 
Q3 Readability of texts +2.67 +1.93 
Q4 Quality of available help - - 
Q5 Relevance of information in article context +1.67 +1.93 
Q6 Design quality of visualization +0.83 +2.50 
Q7 Animation quality of visualization +0.83 +2.67 
Q8 Interaction speed of visualization +2.67 +2.67 
Q9 Overall impression of system +1.67 +2.67 

Q10 Would you actually use the system +1.67 +2.17 

 
The analysis of the questionnaires filled after taking the test revealed significant 

differences between conditions. Users ranked the three-dimensional „Knowledge 
Space“ Visualization (C2) higher than the two-dimensional „Knowledge Web“ Visu-
alization (C1) in all questions except Q3 (compare table 5). It must be noted that no 
ranking was acquired for question Q4 because the help facilities had been disabled for 
both conditions (C1,C2). This modification to the experimental setup was made after 
the design test (compare section 4.3) to avoid biasing results by time spent in studying 
help content. 
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Table 6. Problems reported by more than one user 

Index Problem Condition 
P1 Arrangement of history entries C1 
P2 Color-coding of symbols representing articles C1 
P3 Choice of symbols representing articles C1 
P4 Missing topical segmentation (as compared to C2) C1 
P5 Missing article abstract preview (as compared to C1) C2 
P6 Choice of symbol and caption for “lock” and “keep on top” C1,C2 
P7 System behavior on switching from and to Encyclopedia C1,C2 

 
The comments made by users in writing (on the questionnaire form) and verbally 

(recorded during the test session) served to refine the observations stated before. The 
visual appearance of the two-dimensional Knowledge Web (condition C1) and the 
common user interface components integrating both systems with the encyclopedia 
were the major source of comments (compare table 6). 

4.5   Discussion of Results 

The performance data gathered in the formal experiment indicates that users required 
more time for tasks involving navigation between article contexts (A3,A4) than for 
tasks involving analysis of a single article context (A1,A2). A high number of timeout 
events occurred in tasks involving navigation (A3,A4). This indicates a weak point in 
the evaluation design (e.g. tasks too complex, not enough training).  

The statistical analysis of the performance data was inconclusive. No significant 
differences between the conditions (C1,C2) could be detected. This fact can be attrib-
uted in part to the high number of timeout events. The individual performance data 
shows a 32% advantage of C2 over C1 for task A1 and a 37% advantage of C2 over 
C1 for task A2 (no timeout events occurred in tasks A1 and A2). 

The user feedback collected through the questionnaires indicates that users pre-
ferred C2 over C1 in most aspects. The topical segmentation available in C2 was 
particularly well liked (Q2, +53% acceptance). Users preferred design (Q6, +28% 
acceptance) and interactivity (Q7, +31% acceptance) of C2 over C1. The overall im-
pression reported by users favored C2 (Q9, +17% acceptance). The presentation of 
text was the only aspect where C1 was ranked higher than C2 (Q3, +12% acceptance). 

Comparative evaluations of two-dimensional and three-dimensional visualizations 
usually find that two-dimensional interfaces perform superior [16]. However, diver-
gent evaluation results have been reported for systems providing overview and brows-
ing functionality [17]. Findings in Knowledge Visualization indicate that for small 
sets of highly structured knowledge items, systems based on visual metaphors outper-
form systems based on visual abstractions [18]. These observations may explain why 
the three-dimensional “Knowledge Space” visualization (C2), which is based on the 
use of visual metaphors, performed comparably to (and was liked better than) the 
two-dimensional “Knowledge Web” visualization (C1), which is based on the use of 
visual abstractions, despite the higher cognitive load imposed by a three-dimensional 
visualization. 
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5   Future Work 

The comparative performance data gathered in the formal experiment has proven 
inconclusive in the statistical analysis. This shortcoming can be attributed to the high 
number of timeout events and to the low number of test subjects. A second iteration 
of the usability evaluation will be designed to account for these factors. The number 
of users participating in the evaluation will be increased to 12. The evaluation design 
will be modified to provide an extended training phase. Navigational tasks (A3, A4) 
will be simplified and explanations for the tasks will be improved. Various smaller 
design problems (e.g. the presence of question Q4) will also be addressed. It is ex-
pected that the second iteration will provide conclusive statistical results on the com-
parative performance of the two conditions (C1,C2). 

The presented evaluation did not measure the performance of the visualization sys-
tems in comparison with the traditional means of discovery provided by digital ency-
clopedias (e.g. keyword search, navigation by cross-reference). A new usability 
evaluation will be designed to include appropriate conditions and tasks. 

The results obtained by the presented evaluation will be applied to revise the three-
dimensional “Knowledge Space” visualization. The rendering of text elements will 
receive particular attention. The integration of the visualization systems with the en-
cyclopedia will be redesigned to account for the issues reported by users. 

6   Conclusions 

The German-language Brockhaus encyclopedia provides a two-dimensional “Knowl-
edge Web” visualization and a three-dimensional “Knowledge Space” visualization to 
facilitate the visual navigation of article context. We have presented the results of an 
evaluation which compared these two systems. The statistical analysis of performance 
data gathered in a formal experiment did not reveal significant differences in the per-
formance of the two systems despite the higher cognitive load imposed by a three-
dimensional visualization. The evaluation of user feedback gathered during the 
evaluation indicates that users prefer the three-dimensional „Knowledge Space“ visu-
alization. We conclude that a three-dimensional visualization system based on visual 
metaphors can perform at least as well as a two-dimensional visualization system 
based on visual abstractions for certain application domains and tasks. 
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Abstract. This paper proposes initial steps towards a generic frame-
work for modeling the scientific process. It is generic according to two
main axes. First, it can be instantiated to cover various types of infer-
ences usually considered relevant in science, second, and more important
here, it allows for the modeling of the social dimension of scientific activ-
ity. After motivating this drive for genericity by looking at some results
from philosophy of science, the paper presents the bases of the frame-
work and its central reliance on the notion of consistency, both at the
individual and group levels. It then instantiates the social dimension
of the framework by proposing an actor-critic model of scientific inter-
action. The ideas proposed are illustrated with examples of hypothesis
formation in medicine.

1 Introduction

Research in Machine Discovery has provided a rich sample of models that account
well for the various forms of reasoning and inferences at work in the scientific
discovery processes. Whether they focus on a problem solving perspective, where
the definition of search spaces and heuristics is key, or on a logical perspective,
where inferences such as induction and abduction are often central, one rather
common assumption is that what is being modeled is the thought process of
one scientist tackling a research problem. Indeed this is in keeping with the
traditional line of research in Artificial Intelligence where one is interested in
understanding or simulating intelligence seen as an individual process.

However, this view can be seen as somewhat outdated, or at least partial, when
one looks at the growing literature, coming essentially from the Social Studies
community, studying science as a fundamentally social process. In this paper,
we describe a framework that is generic enough to model not only inferences of
individual scientists but also interactions between them. Moreover, the proposed
framework can also be instantiated to focus on various forms of reasoning such
as induction and abduction. The outline of the paper goes as follows. First
we give some background to motivate a framework that is generic in terms of
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inference, but more importantly, that can be used to model the social dimension
of scientific activity. Then we introduce the basis of such a framework, followed by
an example of instantiation into an actor-critic model. Throughout the paper, we
illustrate the approach with a running example simulating a medical discussion
between multiple experts tackling a problematic case.

2 Background

Views on Scientific Discovery have considerably evolved both in the history of
philosophy of science and in the (much shorter) history of Artificial Intelligence.
In philosophy of science, the classical view inherited from Greek philosophy was
to look for rules of inferences that would lead to knowledge whose validity would
be guaranteed. A major evolution, lead by individuals such as Comte, Hershel or
Whewell in the 19th century and named consequentialism in [14], whose outcome
was the Hypothetico-Deductive (HD) view, considered that the way a hypothesis
was generated and the way it was evaluated could be completely disconnected.
Indeed, a theory making good predictions (the D of HD) is considered acceptable,
whatever the way it was generated. This lead then to the study of two problems,
discovery per se, i.e. how new ideas, hypotheses, theories are generated, and
justification, i.e. how they can be validated from a scientific standpoint. These
two problems can also be considered as two stages in the discovery process, even
though this is somewhat oversimplifying as the activity of a scientist usually
alternates discovery steps and justification steps. The thinking over stages was
refined further [5,18] with the idea of a discovery stage, where there is no evalu-
ation, the pursuit stage, where hypotheses mature through a refinement process
using some elements of evaluation but not necessarily in a strict sense, and jus-
tification which is the proper scientific evaluation. Philosophers of Science have
during a long time period focused on this last stage because it was the only one
deemed open to serious scientific investigation [17]. The advent of Artificial In-
telligence, and more specifically, the ability to carry out complex and cognitively
plausible computational simulations revived the interest in the discovery stage
[19,4]. In this paper we focus indeed on the discovery and pursuit stages, which
correspond to the process of hypothesis formation and refinement.

Another important evolution of modern philosophy of science concerns the
focus of the study. While it makes perfect sense to study the thought process
of an individual scientist, various researchers (e.g. [13] or [15]), have shown that
discovery is a fundamentally social process. This idea has also impacted Com-
putational Philosophy of Science as witnessed in publications such that [20] and
[6]. The idea that, orthogonally to a multi-stage view of science, science can
be structured vertically, i.e. ideas and hypotheses might come to the individual
but then mature within groups of colleagues and are evaluated by communities
of scientists. Furthermore, it is problematic to define precisely how these two
axes (horizontal, that is, to simplify, maturation or time, and vertical, group or-
ganization from individuals to communities) combine, since one cannot assume
that the community at large contributes only to evaluation. Indeed, through the
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organized confrontation of ideas between groups or individuals, it also partici-
pates in the pursuit and refinement of hypotheses.

It is therefore somewhat surprising to realize that the Machine Discovery has
so far largely neglected this important dimension of scientific activity. The scope
of processes modeled in computer programs has indeed grown richer in the last
two decades since the pioneering Bacon systems [12]. As described in [9], there
has been an evolution from models of science as problem solving in a hypothesis
space, from models with search in two spaces (experiment space, and hypothesis
space) such as in KEKADA [11] and a vision toward 4-spaces models (Experi-
ment space, Hypothesis Space, Paradigm Space, Representation Space)[9]. But
this evolution does not move away from the modeling of an individual scientist,
or to be more precise, it does not mention explicitly what entity is being mod-
eled, it is in a way de-incarnated. A way to overcome this limitation is to opt for
an agent perspective, and further, in order to model the social aspect of knowl-
edge construction, to opt for a multi-agent perspective, a scientific community
being viewed as a Society of Agents. This opens the way towards a framework
which is generic enough to study, model and simulate the inferences of individual
scientists and to study, model and simulate the interactions between scientists
within groups or communities so as to have a credible model of the formation
of scientific ideas and hypotheses. This is the main aim of this paper to present
some basic elements of such a framework, which is deeply rooted on a multi-agent
perspective.

To illustrate the motivation on a concrete example, we give below an example
of a dialog taken from a popular medical TV show that we will use in thereafter
to address the issue of social hypothesis formation. Here we have a senior MD
interacting with 3 other MDs with the goal of reaching a credible hypothesis on
the cause of a patient’s illness. Each interaction leads to the sharing of a relevant
piece of knowledge which can then be contradicted, or possibly further refined.
We wish to be able to simulate convincingly this sort of interaction.

Dr House: This guy doesn’t even get sick like a regular person. Instead of a list of symptoms and no cause,
we have a list of possible causes for one symptom.

Dr Chase: Is the symptom death?
Dr House: Respiratory distress.[...]

Dr Forman: It’s the doping. Injecting extra red cells boosts your endurance level, but it also thickens your
blood. Thick blood equals clots equals respiratory distress.

Dr House: Not with a clean spiral chest CT.
Dr Cameron: The guy’s sleeping in a Hyperbaric Chamber. Over-oxygenation can cause cell damage,and if

the cells in the lungs are damaged...
Dr House: That’d cause pulmonary edema, which he doesn’t have.
Dr Chase: The supplements he’s been taking contain yohimbe which can cause nerve paralysis.
Dr House: Tox-screen was normal. All the tests were normal. There’s no clot, no edema, and yet he still

can’t breathe. So there’s something in here that we can’t see.
Dr Forman: Air! [...] This guy’s been injecting himself how many times a day? All it’d take is one slip of

the needle to cause an air embolus.
Dr House: So, air is keeping him from breathing air. Well, let’s go with that for the irony. Get a VQ scan

and check his veins for bubbles.

3 Distributed Hypothesis Formation Framework

This section defines a general framework concerned with distributed formation
of hypotheses [1]. This formalisation intends to encompass a variety of different
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hypothesis formation problems, and therefore explicit representation of knowl-
edge is not specified. However, it is supposed that there exists some different
kinds of knowledge in the system that are represented in some way. To refer to
these and to the relations between them, we will use abstract concepts, that will
have to be instantiated when dealing with specific problems. We shall see that
these astract concepts are sufficient to develop some useful properties to describe
a system, and, in the next section, that some general mechanisms can be pro-
posed for distributed formation of hypothesis on the basis of these notions. We
will first give our characterisation of the different kinds of knowledge and their
possible representation, before introducing the notion of consistency relation,
that will be detailed at different levels. Then, we will see how we can abstract
away from the specifics of the reasoning used for different kinds of discovery
process.

3.1 Knowledge Classification and Distribution

The first concern is to characterize the knowledge of the agents. We first give
some introductory illustration using the informal example previously described.

Example 1. Let us try to formalize Forman’s proposition, that is ”It’s the doping.

Injecting extra red cells boosts your endurance level but it also thickens your blood.

Thick blood equals clots equals respiratory distress.”. We could get something like:
(1) Injection(RedCells), (2) Injection(RedCells) → ThickBlood, (3) ThickBlood

∧ ClotFormation(X) → Clot(X), (4) ClotFormation(Chest), (5) Clot(Chest) →
RespiratoryDistress.
We have different kinds of elements:

– Factual information about the patient, or observations : (1). In ideal case,
these should be certain.

– General medical theory: (2),(3),(5). When making a diagnosis, it would usu-
ally also be considered certain and common to all member of the team.

– Assumed information, or hypotheses, that could account for observations :
(4). This one is revisable, since new observations could prove it wrong.

Then we have the answer of Dr House : ”Not with a clean spiral chest CT.”,
that can be described by: (6) Clot(X) → ¬ CT(X,Clean), (7) CT(Chest,Clean).
Formula (6) is again part of medical theory, whereas Scanner(Chest,Normal)

is a counter example, that is an observation that contradicts the hypothesis
ClotFormation(Chest) proposed by Dr Forman.

Intuitively, there seems to be some different kinds of knowledge according to their
certain or revisable character, and factuality (general theory or patient data). In
a distributed setting, one should also consider whether some knowledge is specific
to some of the agents or common to all of them. In most cases, we will assume
that agents are initially homogeneous, but will become differenciated through
their history (perceiving and acquiring individually different knowledge). We
shall thus represent knowledge of agent ai with the following concepts:
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Background theory. T C represents common prior knowledge common to all
agents. It is seen in our framework as certain knowledge.

Individual theory. T I
i represents individual knowledge, specific to an agent.

It is certain knowledge that differentiates the agents. We will further distin-
guish two kinds of knowledge in individual theories:
Observation set. Oi represents acquired knowledge of each agent. It is cer-

tain factual knowledge that the agents have usually acquired through
perception or communication. It contains all the factual information
in the individual theory. Thus, it concerns specific data (observations)
rather than general rules.

Rule set. Ri contains all other non factual part of the individual theory.
It represents individual prior knowledge differentiating the theoretical
background of individual agents. That set can only grow through com-
munication with other agents. Note that if the agents are initially ho-
mogeneous, this set is empty, and T I

i = Oi.
Hypothesis. hi represents some revisable knowledge to which the agent is com-

mitted, though it knows it is not certain. It is usually built from its other
knowledge, or interaction with other agents.

We will now illustrate these notions with an example instanciation of this
framework to a simple abductive medical diagnosis.

Example 2. All agents knows the possible diseases and their symptoms, and they
must build an hypothesis about a patient, each of them initially knowing only
part of the symptoms. More formally, we consider:

– a set of possible disease D = {angina, bronchitis, flu, hayfever}.
– a set of possible symptome S = {cough, mucus, fatigue, fever}.
– a causality relation E linking a disease to the symptoms it can cause. We

have E = {(angina,fatigue), (angina,fever),(bronchitis, cough), (bronchitis,
mucus), (flu, cough), (flu, fatigue), (flu, fever), (hayfever,mucus)}. We define
the function effect(D, E) such that given a set of diseases D and a relation
E, effect(D, E) = {s|∃d ∈ D, (d, s) ∈ E}, that gives us all the symptoms
caused by a set of diseases according to some causality relation.

In this framework, we can thus have a distributed diagnosis problem, given by a
set Oi of observations on the patient for each agent. For instance, we could have
3 agents, a1, a2, a3 with O1 = {fatigue}, O2 = {fever,¬cough} and O3 = { }.

Our different concepts would then map in the following way:

– Background theory T C is the tuple (D,S, E), that we shall call the medical
theory. It is certain, and common to all agent.

– observations are either the presence or absence of a symptom.
– Then, agents being initially homogeneous, rules sets Ri are empty, and in-

dividual theories are just observation sets: T I = Oi.
– Finally, an hypothesis is a diagnosis, that is, a set of diseases.
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If we did not consider agents to be initially homogeneous (that is, agents do
not all have the same initial knowledge of medical theory), we would have a
case of distributed diagnosis with distributed theory. Then we make the following
adjustments:

– Background theory T C = (D,S, EC), where EC is the symptoms of diseases
that are known be everyone.

– Each agent knows part of the medical theory, represented by its rules set
Ri = EI

i ⊆ E \ EC .
– Individual theory T I

i = EI
i ∪Oi.

3.2 Consistency

As hypotheses are revisable, they might be contradictory with some new obser-
vations. The validity of an hypothesis is something that should be ensured and
maintained. It is the basis of the evaluation process. However, the condition of
this validity can vary according to the kinds of hypotheses and observations. We
thus need some abstract notion, the consistency relation, to represent this.

Consistency of an Hypothesis with Certain Knowledge. To represent
the adequation of what an agent believes with what it knows, we will use an
abstract relation linking an hypothesis with certain knowledge : the consistency
relation. As the background theory is common to all agents, we will incorporate
it in the consistency relation. Thus, the consistency will link a hypothesis with an
individual theory1. We shall denote this property by Cons(h, T I), meaning that
hypothesis h is consistent with individual theory T I . Such a relation can take
different forms according to the reasoning involved. It can represent the notions
of anomaly discussed in [6] or of surprise used in KEKADA[11]. Though we
illustrate our presentation with a problem of medical diagnosis, several different
instantiations of this framework can be found in [1], such as logical abduction
[2] or inductive concept learning [3].

One important property that consistency can verify is the one of
compositionality.

Definition 1 (Compositionality of a consistency relation). A consistency
relation is compositional iff the following equivalence is verified:

Cons(h, T I) and Cons(h, T I ′)⇔ Cons(h, T I ∪ T I ′)

The ⇒ direction of this equivalence is often called additivity [8]. It basically
means that it is possible to consider independently each pieces of knowledge
from the individual theory. The⇐ direction is best understood when we read the
contrapositive: it says that when h is not consistent with some individual theory
T I , it cannot become consistent again when that theory grows monotically. In
1 Note that if agents are initially homogeneous, T I can be replaced by an observation

set O and consistency defined as a relation between h and O.
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other words, an hypothesis assessed as inconsistent on the basis of an individual
theory cannot become consistent when that theory grows. We refer to this latter
property, following [8], as incrementality. It is often necessary to require that
agents are initially homogeneous to ensure this property for the consistency
relation.

Example 3. We now describe an instantiation of the consistency relation for
distributed medical diagnosis problem. In this problem, an hypothesis (diagnosis)
is valid if the assumed diseases causes the symptoms that are observed and no
more.

More formally: ∀h, ∀T I = EI ∪O, Cons(h, T I) iff

– ∀s ∈ S,¬s �∈ O ∨ s �∈ effect(h, EC ∪EI) (coherence)
– ∀s ∈ O ∩ S, s ∈ effect(h, EC ∪ EI) (completeness)

This consistency relation is compositional iff agents are initially homogeneous
(∀T I , EI = { }).

Thus, using the background theory defined earlier, common to all agents
(∀i, EI

i = { }), and h1 = {angina,hayfever}:

– h1 is consistent with {¬ cough, fever, mucus} (coherent and complete).
– h1 is inconsistent with {fatigue, mucus, ¬ fever} (incoherence since fever

should be an effect of angina).
– h1 is inconsistent with {cough, fever, mucus} (incompleteness since cough is

not an effect of angina nor hayfever).

Group Consistency. Now we extend this notion of consistency to agents and
groups of agents by introducing the notion of group-consistency:

Definition 2 (Group Consistency). An agent ai is group consistent wrt. the
group of agents G (GCons(ai, G)) iff Cons(hi,∪i∈GT I

i ))

A stronger notion of consistency requires any agent within the group to be
consistent with the entire group.

Definition 3 (Mutual Consistency). A group of agents is mutually consis-
tent (MCons(G)) iff ∀ai ∈ G, it is the case that GCons(ai, G).

Now for the purpose of our work, we shall mainly be interested in some interesting
particular cases which depend on the cardinality of group G:

Internal consistency. this is the limit case when G is limited to a single agent.
In this case, Group and Mutual consistency collapse into a single notion that
we shall call internal consistency (ICons(ai)).

Peer consistency. when the group of agents we consider contains only two
agents. In this case we can distinguish both the peer consistency of an agent
wrt a fellow agent, and the mutual peer consistency of a group of two agents.
This is especially important in our context, since our communication proto-
cols only deal locally with bilateral communications.
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MAS-consistency. we conclude with the limit case involving all agents within
the society. In this case, we will refer to the MAS-consistency of an agent
wrt to the society; and to the mutual MAS-consistency of a society of agents.

Besides these three cases, group-consistency is also a useful tool to describe
the state of consistency of various subgroup of a system. If agents represents
scientists, interesting sub-groups could be workgroups, laboratories, or commu-
nities of specialists of a given domain, depending on what the whole system
represents (whole scientific community or smaller part of it).

3.3 Reasoning

The consistency notion captures the adequacy of an hypothesis, but does not
make assumption on how to build such a hypothesis. There exists a number of
different algorithms to produce hypotheses with a single agent, that can be used
to model agents’ internal reasoning. To abstract away from the specificity of dif-
ferent algorithms we will introduces the notion of hypothesis formation function
and internal revision mechanism corresponding respectively to the generation
process and the refinement or pursuit process.

Evaluation of an Hypothesis. An individual must be able to evaluate an hy-
pothesis with respect to its observations. Especially, it must be able to determine
if a given hypothesis is consistent with its observation memory. When it is not
the case, an informed answer explaining the origin of the inconsistency would be
useful for revising the hypothesis. If the consistency relation is compositionnal,
such an answer can just be a counter-example, that is, a piece of information k
that is not consistent with the hypothesis.

We will define an agent’sinternal evaluation mechanism ξ as a function that
takes an hypothesis h and the individual theory T I

i of the agent, and return a set
of counter-examples C. If Cons(h, T I

i ) then C is empty, otherwise, C contains
one or more counter examples for this hypothesis taken from T I

i (that is C
contains one or more pieces of information from T I

i inconsistent with h).

Generation and Pursuit of an Hypothesis for an Individual. A hypothe-
sis formation mechanism Eh is a process that takes an agent internal states and
returns an hypothesis that is consistent with these internal states. Usually, we
will restrict the internal states that can have impact on the result and consider
only the individual theory T I . Thus, usually, Eh(ai) can be written as Eh(T I

i ).
When an agent already has some hypothesis h consistent with its individual

theory T I and receive some new piece of information k that contradicts its hy-
pothesis, it can try to refine this hypothesis. This process is called the pursuit of
an hypothesis [5,18]. An internal pursuit mechanism µ is thus a process triggered
by an agent with hypothesis h ∈ 〈 and individual theory T I that receives a new
piece of information k to ensure that its internal consistency is maintained. This
process adds k to the individual theory, and revise the hypothesis if necessary
(we will denote the resulting hypothesis by µ(h, T I , k)).
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Collective Pursuit. For groups of agents, we will focus on pursuit mechanisms,
assuming that the generation of a first hypothesis is rather an individual process.
However this stance mostly affects the naming of our representation rather than
the underlying formalisation. A pursuit mechanism M is a process by which an
agent ai receving a new observation o communicates with a group G of agents
to refine its hypothesis, and possibly those of the other agents. We denote this
application of M by ai with G upon reception of o by M(ai, G, o). Depending
on the cardinality of the group G we will distinguish three levels:

Internal pursuit mechanism. The limit case when n = 1 has already been
described previously with internal pursuit mechanism µ.

Local pursuit mechanism. A local pursuit mechanism M2 is the process by
which an agent ai that has received a piece of information k communicate
with another agent aj to refine its hypothesis, and possibly those of aj . It will
usually be based on some internal pursuit mechanism µ by which agents can
take into account new informations. As pursuit also involves some evaluation,
internal evaluation mechanisms ξ might also be used.

Global pursuit mechanism. A global pursuit mechanism Mn involves all
agents in the system. It is a process by which an agent ai receving some
new piece of information k triggers a series of communications (usually lo-
cal pursuit mechanisms) involving all agent in the system, and revising the
internal states of ai (its hypothesis) and possibly those of the other agents.

Note that though these pursuit mechanisms are defined here as being trigerred
upon reception of an new piece of information, an agent can decide to trigger
them to reach consistency at any moment (in which case k = { }). The aim of a
pursuit mechanism is indeed to guarantee some property on the internal states
of the agents.

Definition 4 (Guarantee of a property). A pursuit mechanism M guaran-
tees a property P (ai, G) iff it is the case that any execution of M by ai with G
will result in a situation where P (ai, G) holds.

4 Learner Critic Mechanisms for Distributed Hypothesis
Refinement

If we consider our example conversation betwen a senior MD and its assistant,
we have some recurring structure. An assistant proposes a diagnosis to the senior
MD that either refutes it with a counter-example or accepts it. Once an hypoth-
esis has been accepted, further tests are planned to check it. This proposal and
rebuttal structure, in which an individual proposes hypotheses and another eval-
uates them can be found in different domains. We refer to it as a learner and
critic approach. Such approach have been used in a variety of learning problem
and methods such as case-based reasoning [16] or concept learning [22]. It is also
suggested in [20] as a possible division of work for knowledge discovery, learn-
ers being constructive dogmatists and critics being skeptical critics (following
Kuipers’ terminology[10]).
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This section present some pursuit mechanisms based on our framework, that
can thus benefit from its generality to be applied in different hypothesis forma-
tion contexts. that can be used to reach or maintain different levels of consistency
in a system of agents, based on this learner and critic approach. An agent taking
a role of learner builds locally an hypothesis that is proposed to other agents,
acting as critics. These critics then criticize the hypothesis and answer by giving
counter-examples, that is, pieces of information inconsistent with the proposed
hypothesis, or by accepting the hypothesis. Thus learners have a role of hypoth-
esis generation or formation, whereas critics have mainly an evaluation role.

4.1 A Local Pursuit Mechanism

Our basic local pursuit mechanism M2
U is an asymmetric process called Uni-

lateral Hypothesis Exchange (UHE). The agent applying the mechanism is the
learner, actively building and refining an hypothesis. The second agent is a critic,
using its knowledge to acknowledge or invalidate hypotheses.

It works as follows. The learner agent ai first updates its hypothesis hi to h′
i

using an internal pursuit mechanism µ guaranteeing ICons(ai). Then it proposes
it to the partner agent aj , called critic, and aj applies its evaluation mechanism
ξ on this hypothesis. If ξ(h) = { }, it replies with acceptdirect and adopts h′

i

as its new working hypothesis, otherwise it sends counter-example(ξ(h)). Upon
reception of one or more counter-examples, ai applies again µ to revise h′

i and
propose the resulting hypothesis as before, except that an acceptance will now
result in a acceptindirect message. If consistency is compositional,M2

U guarantees
mutual peer consistency for any pair of agents.

Example 4. We consider two agents in the distributed diagnosis problem. Their
observation sets are: O1 = {cough} and O2 = {fever, ¬ mucus}.
Their hypotheses are h1 = {bronchitis} and h2 = {angina}. Now if these two
agents were to communicate using the Uniteral Hypothesis Exchange Protocol,
we would get the following dialogue.

a1 sends to a2 propose({bronchitis})
a2 sends to a1 counter-example(¬ mucus)
a1 sends to a2 propose({flu})
a2 sends to a1 accept

4.2 Global Pursuit Mechanisms

In a fully connected society of agents, where an agent can always communicate
with another, it is possible to plan a series of local revisions in order to ensure
MAS-consistency. In such case, we will present some complete global revision
mechanism that articulates those local revisions in different ways, according
to the parameters of the system or the requirements. If the structure is more
complex, but still static and connected, then some agents must acts as relay
to ensure peer-consistency of two agents that cannot communicate. We will not
detail mechanisms for structured networks here, but a propagation mechanism
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to deal with this case can be found in [2]. We now present a complete global
pursuit mechanism for fully connected societies of agent : Clock-wise hypothesis.

The general idea is to make repeated uses of a local mechanism guaranteeing
mutual peer consistency to eventually get a MAS-consistent hypothesis adopted
by all agents. The hypothesis must be validated by all agents in turn without
being changed. Any change in the hypothesis forces us to check it again from
the beginning. The learner agent a1 first uses the local pursuit mechanism M2

U

to reach mutual peer-consistency with a2. Then it does the same with agent a3.
If M2

U ends with an acceptdirect, then a1 proceeds to exchange its hypothesis
with the next agent (a4), else (acceptindirect) it goes back to a2. This iterates,
each acceptindirect restarting the process with a new hypothesis submitted to a2.
When an sends a acceptdirect, it means that the hypothesis has been accepted
and adopted in turn by all agents. In such a case, the mechanism ends, and this
common hypothesis is consistent with every individual theory.

Therefore, if the consistency relation is compositional,Mn
C guarantees mutual

MAS-consistency in any fully connected society of non-individualistic agents.
An example of variant for non-individualistic agent in fully connected soci-

eties is the broadcasted hypothesis exchange Mn
B, in which, instead of sequentially

proposing its hypothesis in turn to every critic agent, the learner agent broad-
cast its hypothesis to all critics. It then waits for individual answers (accept
or counter-example) from all of them, and applies its internal pursuit process
to braodcast a new hypothesis if any counter-example is received. Otherwise, it
means the hypothesis is SMA-consistent, and the mechanism ends. Thus, Mn

B

also guarantees mutual MAS-consistency for fully connected societies of agents
if the consistency relation is compositionnal.

5 Conclusion

Through the presentation of the bases for a generic framework in this paper,
we have shown that a multi-agent approach is useful to model the richness of
scientific activity, including the social dimension of knowledge construction –
which until now has been largely neglected by the machine discovery community.
Our first motivation, as in [21], is therefore to go about reconciling Machine
Discovery with relatively recent developments in social philosophy of science.

However we believe that the impact of this framework is potentially wider.
The two typical motivations in AI are, on one hand, to obtain systems which
are closer to human intelligence to the point of cognitive plausibility, and on
the other hand to obtain systems which obtain higher levels of performance.
So a relevant question to address concerns the performance of the distributed
framework presented here. More precisely, does the distribution over a society
of agents affect the performance compared to a mono-agent system that could
access at negligible cost all information (knowledge, observation) available at a
given time? A first answer is that though intuitively most would believe this im-
pact to be negative, there are also some arguments to think it could be positive in
some settings. In [3] the application of this framework with an order-dependent
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incremental bottom-up learning process to inductive concept learning yield in-
teresting results. Multiplication of the evaluation and revision process caused
by distribution improved the final accuracy. Besides, the whole area of ensemble
learning in supervised learning [7], known to have significantly improved single
learner performance, can be seen as a form of distribution that can easily be
modeled in our multi-agent framework.

Furthermore, we know that a centralized organization of science is not credi-
ble for human scientists, because of the cognitive limitations specific to humans
(in terms of memory, processing or communication). But one could argue that
these limitations do not apply to computer systems. However the actual trend is
to reproduce in computer-supported science (in particular e-science working over
the internet) the distributed nature of human science. Databases and knowledge
repositories are distributed internationally and computing capacity as well, es-
pecially within the grid metaphor. Therefore we believe that this multi-agent
approach is even more relevant at a time of science virtualization.
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Abstract. An important task in many scientific and engineering disci-
plines is to set up experiments with the goal of finding the best instances
(substances, compositions, designs) as evaluated on an unknown target
function using limited resources. We study this problem using machine
learning principles, and introduce the novel task of active k-optimization.
The problem consists of approximating the k best instances with regard
to an unknown function and the learner is active, that is, it can present
a limited number of instances to an oracle for obtaining the target value.
We also develop an algorithm based on Gaussian processes for tackling
active k-optimization, and evaluate it on a challenging set of tasks re-
lated to structure-activity relationship prediction.

Keywords: ActiveLearning,Chemicalcompounds,Optimization,QSAR.

1 Introduction

The philosophy of science has since a long time studied scientific discovery pro-
cesses, and recently, the artificial intelligence community has taken up the chal-
lenge as to study how scientific discovery processes can be automated [1]. One
aspect that is quite central in scientific discovery, as well as in many engineering
problems, is that of determining the next experiment to be carried out.

In this paper, we apply machine learning principles to select the next ex-
periment in High Throughput Screening (HTS), an important step in the drug
discovery process, in which many chemical compounds are screened against a
biological assay. The goal of this step is to find a few lead compounds within
the entire compound library that exhibit a very high activity in the assay. This
is also the setting of the new robot that is currently under development in the
robot scientist project [1] at the University of Aberystwyth. The task is akin
to many other scientific and engineering disciplines, where the challenge is to
identify or design those instances that have optimal performance according to
some criterion that needs to be optimized. For instance, in membrane design,
it is important to find those parameters of the process that yield the best per-
formance [2]; in coherent laser control, the goal is to find the laser pulse that
maximally catalyzes a chemical reaction [3]. In this type of application, the tar-
get criterion is unknown to the scientist or engineer and only partial information
can be obtained by testing specific instances for their performance. Such tests
correspond to experiments and can be quite expensive.

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 185–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In HTS, it is not sufficient to find just a single optimal example. The optimal
compound might ultimately not be usable as a starting point for the next step
in the drug discovery process for various reasons unrelated to its performance in
the assay. Therefore, a number of alternatives need to be found as well. Ideally,
each of these near-optimal alternatives would have a different modus operandi.
The challenge then is to identify the k best performing instances using as few
experiments as possible. We will refer to this task as active k-optimization.

This task is closely related to global function optimization. It is also related
to active learning in a regression setting [4], where the goal is to find a good
approximation of the unknown target function by querying for the value of as
few instances as possible. Whereas this approach allows one to identify the best
scoring instances, it is also bound to waste resources in the low scoring regions of
the function. Thus, in contrast to active regression, an extra ingredient is added
to the problem that is reminiscent of reinforcement learning. The learner will
have to find the right balance between exploring the space of possible instances
and exploiting those regions of the search space that are expected to yield high
scores according to the current approximation of the function. Finally, active
k-optimization differs also from active concept-learning that has already been
applied in applications such as structure-activity relationship prediction [5] in
that a regression task has to be performed.

This paper is organized as follows: in Section 2 we formalize the problem,
and in Section 3 we propose a Gaussian process model for tackling it. In Section
4 we investigate a number of different strategies for balancing exploration and
exploitation. We evaluate our approach experimentally in Section 5. Finally, We
discuss related work and possible extensions in Section 6.

2 Problem Statement

Our work is especially motivated by the structure-activity relationship domain,
where high-throughput approaches assume the availability of a large, diverse
but fixed library of compounds. Hence, the pool-based active learning setting
is most appropriate. In this setting, the learner incurs a cost only when asking
for the measurement of the target value of a particular instance, which must be
selected from a known, finite pool. In principle, the learner may be able to exploit
the distribution of the examples in the pool without cost. To some extent, this
setting is therefore also a semi-supervised learning setting.

The problem sketched in section 1 can be more formally specified as follows:

Given:

– a pool P of instances,
– an unknown function f that maps instances x ∈ P on their target values

f(x),
– an oracle that can be queried for the target value of any example x ∈ P ,
– the maximal number Nmax of queries that the oracle is willing to answer,
– the number k of best scoring examples searched for.
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Find:

– the top k instances in P , that is, the k instances in P that have the highest
values for f .

One can see that the above combinatorial optimization problem is a close
relative to the problem of global function optimization. Algorithms developed
in the discipline of global function optimization only consider k = 1 and are
optimized for continuous domains. Still, largely the same concepts and techniques
can be used.

From a machine learning perspective, the key challenge is to determine the
policy for determining the next query to be asked, based on the already known
examples. This policy will have to keep the right balance between exploring the
whole pool of examples and exploiting those regions in the pool that look most
promising.

3 Gaussian Process Model

We will use a Gaussian process model [6] for learning, also known as Kriging. In
this section we briefly review the necessary theory. More detailed explanations
can be found in several textbooks on the subject [7,8].

We first introduce some notation. We assume that there is a feature map
φ : P → F mapping examples to a feature space F . We denote with XN =
[x1x2 . . . xN ] the vector of the N first examples, with TN = [t1t2 . . . tN ] the
vector of their target values, and with ΦN = [φ(x1)φ(x2) . . . φ(xN )] the matrix
where each row is the image of an example (abusing notation in case F has
infinite dimension). For our objective criterion, ‖TN‖best−k is the average of
the k largest elements of the vector TN , where we assume all target values to be
positive. The notation ‖ · · · ‖best−k is warranted since the function satisfies all
properties of a vector norm under this assumption.

We assume that there is a linear approximate model for the target value t(x)
of instances

m(x) = wφ(x) (1)

(with w ∈ F a weight vector) such that the values of the modeling error t(x) −
m(x) for examples randomly drawn from the pool P are independently Gaussian
distributed with zero mean and variance σ2. We use the following notation to
denote that a random variable has a Gaussian distribution:

t(x) −m(x) ∼ N (0, σ2). (2)

In matrix notation Equation (2) becomes P (TN |ΦN , w) ∼ N (ΦNw, σ2I). Our
prior belief for the vector w is Gaussian with zero mean and covariance matrix
Σpw. One can compute the posterior P (w|TN , ΦN ) using

P (w|TN , ΦN ) ∝ P (w)P (TN |ΦN , w). (3)
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A straightforward derivation gives

w|TN , XN ∼ N (w̄N , Σw,N) (4)

where the mean w̄N and variance Σw,N is

w̄N = σ−2Σw,NΦ
NTN

Σw,N = (σ−2Φ
NΦN + Σ−1

pw )−1.

For a new example x∗ we can then estimate the target value by

t∗|XN , TN , x∗ ∼ N
(
w̄

Nφ(x∗), φ(x∗)Σw,Nφ(x∗)
)

(5)

One can show that this formula is equivalent to the following distribution which
does not refer to feature space explicitly:

t∗|XN , TN , x∗ ∼ N
(
t̄∗, var(t∗)) (6)

where
t̄∗ = k(x∗, XN )(k(XN , XN ) + σ2IN )−1TN (7)

var(t∗) = k(x∗, x∗)− k(x∗, XN )(k(XN , XN) + σ2IN )−1k(XN , x∗) (8)

and where k is a kernel defined by

k(x, y) = φ(x)Σpwφ(y) (9)

Here, we use the abbreviations

k(x∗, XN) =
[
k(x∗, x1)k(x∗, x2) . . . k(x∗, xN )

]
k(XN , x∗) = k(x∗, XN )

for vectors of kernel values, and

k(XN , XN ) = [k(x1, XN)k(x2, XN ) . . . k(xN , XN )]

for a matrix of kernel values. k(XN , XN) is called the Gram matrix.

4 Selection Strategies

Different example selection strategies exist. In geostatistics, they are called infill
sampling criteria [9].

In active learning, in line with the customary goal of inducing a model with
maximal accuracy on future examples, most approaches involve a strategy aiming
at greedily improving the quality of the model in regions of the example space
where its quality is lowest. One can select new examples for which the predictions
of the model are least certain or most ambiguous. Depending on the learning
algorithm, this translates to near decision boundary selection, ensemble entropy
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reduction, version space shrinking, and others. In our model, it translates to
maximum variance on the predicted value or argmax(var(t∗)).

Since our goal is not model accuracy but finding good instances, a more
appropriate strategy is to select the example that the current model predicts to
have the best target value, or arg max(t̄∗). We will refer to this as the maximum
predicted strategy. For continuous domains, it is not guaranteed to find the
global, or even a local minimum [10].

A less vulnerable strategy is Cox and John’s lower confidence bound criterion
[11], which we will refer to as the optimistic strategy. The idea is to not sample
the example in the database where the expected reward t̄∗ is maximal, but
the example where t̄∗ + b · var(t∗) is maximal. The parameter b is the level of
optimism. It determines the balance between exploitation and exploration. It
is obvious that the maximum predicted and maximum variance strategies are
special cases of the optimistic strategy, with b = 0 and b =∞ respectively. In a
continuous domain, this strategy is not guaranteed to find the global optimum
because its sampling is not dense [10].

Another strategy is to select the example xN+1 that has the highest proba-
bility of improving the current solution [12]. One can estimate this probability
as follows. Let the current step be N , the value of the set of k best examples
be ‖TN‖best−k and the k-th best example be x#(k,N) with target value t#(k,N).
When we query example xN+1, either tN+1 is smaller than or equal to t#(k,N),
or tN+1 is greater. In the first case, our set of k best examples does not change,
and ‖TN+1‖best−k = ‖TN‖best−k. In the latter case, xN+1 will replace the k-th
best example in the set and the solution will improve. Therefore, this strategy
selects the example xN+1 that maximizes P (tN+1 > t#(k,N)). We can evaluate
this probability computing the cumulative Gaussian

P (tN+1 > t#(k,N)) =
∫ ∞

t=t#(k,N)

N (t̄∗, var(t∗))dt , (10)

where t̄N+1 and var(tN+1) can be obtained from Equations (7, 8). In agreement
with [13], we call this the most probable improvement (MPI) strategy.

Yet another variant is the strategy used in the Efficient Global Optimization
(EGO) algorithm [14]. EGO selects the example it expects to improve most upon
the current best, i.e the one with highest

E[max(0, t− t#(k,N))] =
∫ ∞

t=t#(k,N)

(t− t#(k,N))N (t̄∗, var(t∗))dt . (11)

This criterion is called maximum expected improvement (MEI).
In real-world applications it is not only important to find a solution quickly,

but also to know when the optimal (or an adequate) solution has been found.
The trade-off one has to make here is between budget and quality.

In a large number of situations, one will have a fixed budget and the goal
will be to have an optimal solution when the budget is exhausted. Sometimes
however, one can save significantly on the budget when a slightly suboptimal
solution is acceptable or when the risk of having a suboptimal solution is small.
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One approach is to bound the probability that any of the non-queried exam-
ples is better than the k-th best example so far. From Equation (10) we can
compute for a particular example x that has not been queried the probability
that its target value t will be larger than t#(k,N). We can then write

P (∃x ∈ P \XN : f(x) > t#(k,N)) ≤
∑

x∈P\XN

P (f(x) > t#(k,N)) (12)

which is a tight upper bound if the individual P (f(x) > t#(k,N)) are small (as
is the case when we consider to stop querying) and independent.

5 Experimental Evaluation

As sketched in the introduction, we shall experimentally evaluate our collection
of methods in the area of high throughput screening in the context of drug lead
discovery. In particular, we shall evaluate the algorithms on the US National
Cancer Institute (NCI) 60 anticancer drug screen (NCI60) dataset [15]. This
repository contains measurements of the inhibitory power of tens of thousands
of chemical compounds against 59 different1 cancer cell lines. NCI reports the
log-concentration required for 50% cancer cell growth inhibition (GI50) as well as
cytostatic and cytotoxic effect measures, but we only used the log GI50 data. Real
world drug discovery screening operations would normally include non-toxicity
in the measure to optimize for2.

To perform a measurement, each compound is diluted repeatedly, yielding a
geometric series of concentrations. The actual GI50 can turn out to be outside
the range of concentrations chosen a-priori. In that case, one only knows an
upper or lower bound for the value, and a new measurement for that compound
must be performed to collapse the interval to a point value. We ignored such out
of bounds measurements.

To improve interpretability of the experiments, an equally sized pool of 2,000
compounds was randomly selected from each assay. This also saved computa-
tional resources, though it would have been possible to use the entire dataset, for
all algorithms are only of complexity O(Nmax ·#P) as long as both the number
of features and the budget are constant.

We used a linear kernel. The chemical structure of each compound was rep-
resented as 1024 FP2 fingerprints, calculated using Open Babel 2.1.0. The algo-
rithms were bootstrapped with GI50 measurements of ten random compounds.
Since the result depends on this random boot sample, each experiment was re-
peated 20 times and the results were averaged.

In each assay, NCI measured some compounds repeatedly. For these com-
pounds, the dataset lists the standard deviation among the measurements, as
1 One of the originally 60 cell lines was evicted because it was essentially a replicate

of another [16].
2 E.g. the specificity index, usually defined as the log-ratio of the toxic concentration

to the effective concentration.
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well as the average. In order to estimate the measurement error for each assay, we
used the unweighted average standard deviation over all repeated measurements
in the assay. This value was used as the standard deviation σ in the Gaussian
term of our model in Equation (2).

To evaluate our algorithms in practice, we recorded ‖TN‖best−k as a function
of the fraction of compounds tested. For every setting (selection strategy, value of
k), these functions were then averaged over the 59 datasets considered. Figure 1
plots these curves for k ∈ {1, 10, 25, 100} for all described strategies and random
selection. For the optimistic strategy, we tested optimism levels of 0.5, 1, and 2.

Table 1 lists for several budgets Nmax which strategy is best (attains the
highest ‖TNmax‖best−k). The budget is shown as a percentage of the pool size.
For each different strategy, the table then also gives the Wilcoxon signed-rank
test p-value for the null hypothesis that the difference between the top-k values
of this strategy and those of the best strategy is on average 0.

We are now well equipped to answer four important questions about our
algorithm:

Q1. Do active k-optimization strategies isolate valuable instances quicker than
random selection?
Q2. What is the relative performance of the different selection strategies listed
in Section 4?
Q3. Do strategies that take k into account perform better than strategies that
do not?
Q4. Can the stopping criterion (Eq. 12) be used to decide when a near-optimal
solution has been found?

5.1 Expedience

From the results presented in Table 1 and Figure 1, one can see that random
example selection clearly performs worse than all other selection methods in
all settings, except for the maximum variance strategy which does still worse
for large budgets, especially for k = 100. We can conclude that the answer
to question Q1 is positive, because actively choosing examples with one of the
presented strategies substantially speeds up the finding of examples with high
target values.

It is remarkable that the starting points of the random strategy are lower
for higher k. This is due to the fact that the distribution of target values is
skewed: compounds with very small target values are sparser than compounds
with very large target values. In this way, ‖TN‖best−k decreases only slowly
while ‖TN‖worst−k (the average of the k smallest elements of TN) increases
quickly for larger k. This causes the value of a random sample to be lower when
scaled to a [0, 1] interval. That the non-random strategies start higher than the
random strategy for k = 25 and k = 100 is due to the fact that there are only
10 bootstrapping examples, and the non-random strategies actively select 15
(for k = 25) or 90 (for k = 100) examples before they can be evaluated a first
time.
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Fig. 1. The value of ‖TN‖best−k
in each step, for all proposed active learning strategies

and random selection, averaged over 20 runs for each of the 59 datasets. A log scale
is used on the horizontal axis to reveal the performance for small as well as large
budgets. The vertical axis is scaled to place the aggregate target value of the overall k
best compounds at one and the worst k compounds at zero.

5.2 Relative Performance

Unsurprisingly, one can see that querying the maximally uncertain example is
(in contrast to settings where one tries to optimize accuracy) not a good k-
optimization strategy.

Overall, on the NCI60 datasets, the optimistic strategy with an optimism
level of 1 was most robust. In all situations considered, it performed either best
or not significantly worse than the best strategy. The difference with 2 and 0.5
optimism is more pronounced for higher values of k. Note that we exploited the
information in the NCI datasets about the accuracy of the measurements. For
other datasets that do not allow to estimate the accuracy of the input data, it
may be harder to come up with a good value for var(t∗). One can use a maximum
likelihood estimate, at the cost of some robustness [9].

Greedily querying the example for which the highest target value is predicted,
performs slightly worse than the optimistic strategy. The MPI strategy performs
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Table 1. p-values for k ∈ {1, 10, 25, 100}. ε indicates that p < 10−8 .

Budget 10% 15% 20% 25% 10% 15% 20% 25%

k 1 10

Max predicted 0.305 0.304 0.039 0.088 0.106 0.497 0.040 0.021
Optimistic (b = 0.5) Best Best 0.282 0.392 0.274 0.456 0.251 0.111
Optimistic (b = 1) 0.837 0.776 Best Best 0.141 0.390 Best Best
Optimistic (b = 2) 0.898 0.472 0.094 0.229 0.179 0.298 0.179 0.298
Max variance ε ε ε ε ε ε ε ε
MPI 0.946 0.538 0.108 0.174 0.455 0.230 0.189 0.052
MEI 0.037 0.057 0.005 0.047 Best Best 0.934 0.809
Random ε ε ε ε ε ε ε ε

Budget 10% 15% 20% 25% 10% 15% 20% 25%

k 25 100

Max predicted 0.074 0.437 0.015 0.015 0.046 0.063 0.003 0.010
Optimistic (b= 0.5) 0.202 0.319 0.177 0.192 0.197 0.118 0.007 0.022
Optimistic (b = 1) 0.280 0.634 Best Best Best Best Best Best
Optimistic (b = 2) 0.083 0.673 0.264 0.478 0.042 0.170 0.016 0.068
Max variance ε ε ε ε ε ε ε ε
MPI Best Best 0.385 0.141 10−5 0.005 0.003 0.001
MEI 0.487 0.184 0.158 0.083 0.254 0.492 0.019 0.001
Random ε ε ε ε ε ε ε ε

worse than the optimistic strategies in the very beginning, except for k = 1. It
performs (and allegedly behaves) similarly to the maximum variance strategy
when it hasn’t seen many more examples than the 10 random bootstraps. From
about 5% for k = 10 and 10% for k = 25, its performance is competitive and
sometimes best, but it again becomes suboptimal for high budgets. The MEI
strategy performs extremely well for k = 10, but is outperformed in some other
settings. This concludes our answer to question Q2.

5.3 Utility of Advance Knowledge of k

In Table 2 and Figure 2 we see that the active learning strategies that explicitly
take k into account, perform far better than their global optimization (k = 1)
peers, except for the warmup of MPI. However, from question Q2 we learned
that the most robust strategy on our datasets, 1-optimism, performs as well.
Since optimism does not rely on prior knowledge of k, the answer to question
Q3 is negative.

5.4 Stopping Criterion

To evaluate the stopping criterion, we used Equation (12) to estimate P (∃x ∈
P \XN : f(x) > t#(k,N)), the probability that there exists an unseen example
in the pool P which is better than the k-th best seen so far. We did so during
one experiment with the MPI strategy for every data set, and recorded these
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Table 2. p-values for k = 25. ε indicates that p < 10−8 .

Budget 10% 15% 20% 25%

MPI ktarget = 1 10−7 ε ε ε
MEI ktarget = 1 ε ε ε ε
MPI ktarget = 25 Best Best Best Best
MEI ktarget = 25 0.487 0.184 0.394 0.640
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Fig. 3. Stopping criterion: negative
logarithm of the difference between the
optimal solution and current solution
plotted against the negative logarithm
of predicted probability of suboptimal-
ity according to Equation (12)

probabilities together with the differences between the solution at that point and
the optimal solution. In this way we can evaluate how much value one would
lose on average if one would stop the screening when the probability of finding
anything better would drop below a certain threshold.

In Figure 3, the negative logarithm of the differences between solution so far
and optimal solution, i.e. − log(‖f(P)‖best−k−‖TN‖best−k), is plotted against
the negative logarithm of the estimated probability that there is still a better
solution, i.e. − log(P (∃x ∈ P \XN : f(x) > t#(k,N))). The standard deviations
on the points in this curve are all below 0.2.

From Figure 3 one can see that there is a good relation between the estimated
probability that the best solution has not yet been found and the optimality of
the current solution. In particular, when the stopping criterion predicts a very
small probability of finding a better solution, one can be confident that querying
more examples will not be very useful. This answers question Q4 positively.

6 Related Work and Possible Extensions

To summarize, we introduced the active k-optimization problem in a machine
learning context, we developed an approach based on Gaussian processes to
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tackling it, and we applied it to a challenging structure-activity relationship
prediction task, demonstrating good performance.

Our work is related to several articles that combine kernel methods and Gaus-
sian processes both in the machine learning and the global optimization com-
munities. In machine learning, one aims at improving prediction accuracy, and
common strategies select the most uncertain examples, or select the examples
that maximize information gain. In global optimization, Gaussian processes are
a popular surrogate to save on expensive function evaluations [9,13].

The setting we introduced is also important for applications in HTS, where so
far active learning has only been applied for classification or regression purposes
but not for optimization. E.g. [5] shows that the maximum-predicted strategy
works well for discriminating rare active compounds from inactives using an
SVM. Furthermore, the NCI database has been used as benchmark for several
machine learning approaches [18,19,20]. As the results show, classification of
compounds can be learned to a certain extent, but accurate prediction (clas-
sifying borderline cases) is still harder than finding extreme values as in our
setting.

Two interesting further questions for research are 1) whether one could make
further gains by devising a strategy that also takes into account a budget that
is fixed from the start, and 2) whether one can select several examples to be
queried together in a single batch before getting the target values for all of
them. This is often needed in HTS. To address the first question, one could e.g.
focus the first fraction of the budget more on exploration and the last part only
on exploitation. The second question requires one to spread selections over the
space in order to avoid obtaining too many correlated values [17]. A few authors
have touched upon this problem in the context of surrogate-based optimization,
but the batch size was algorithm driven as opposed to application constraint
driven, e.g. [10]. This raises a more general problem: given some collected XN , TN

training data and a pool P of examples that one could query next, select n new
examples to query. In such a situation, it may not be optimal to select examples
that individually optimize some criterion. In the ideal case, one would like to
optimize the joint contribution of the entire batch. E.g. if k = 1, the probability
that querying examples xN+1 . . . xN+n would improve the solution would be

P
(
max{tN+1 . . . tN+n} > t#(k,N) | XN , TN

)
which evaluates to the integral of a Gaussian over a union of half-spaces. For
large n, it is nontrivial to select the n examples for which this value is maximized.
However, one can efficiently select xN+1. . . xN+n in order, such that in every step
the example xN+i is selected that maximizes

P
(
max{tN+1 . . . tN+i} > t#(k,N) | XN+i−1, TN+i−1

)
.
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Abstract. In machine learning, there has been an increased interest in
metrics on structured data. The application we focus on is drug discov-
ery. Although graphs have become very popular for the representation of
molecules, a lot of operations on graphs are NP-complete. Representing
the molecules as outerplanar graphs, a subclass within general graphs,
and using the block-and-bridge preserving subgraph isomorphism, we
define a metric and we present an algorithm for computing it in poly-
nomial time. We evaluate this metric and more generally also the block-
and-bridge preserving matching operator on a large dataset of molecules,
obtaining favorable results.

1 Introduction

Metrics are important components of several machine learning methods. Re-
cently, there has been an increased interest in metrics that express a similarity
between structured objects. This is relevant for multiple application domains
including drug discovery [1], image recognition and computer vision [2].

The application on which we focus is the classification of small molecules.
An important step towards the discovery of new drugs is the identification of
chemical compounds that play an active role in the regulation of biological pro-
cesses or disease states. Because of the costs involved, pharmaceutical companies
are interested in virtual screening techniques. Given a molecular database and
a molecule with a desired function, these techniques select automatically a lim-
ited number of candidates expressing this function. This seriously decreases the
amount of molecules that should be screened in the lab.

Since it is widely known that molecules with a similar structure tend to have
the same function [3], structural similarity search among small molecules is the
standard tool used for virtual screening and in silico drug development. The
task then comes down to finding an appropriate similarity measure between
molecules. Such a structural similarity measure should ideally fulfil two require-
ments: (1) it should be efficiently computable, which is important when analyzing
large molecular databases, and (2) the notion of similarity should discriminate
between molecules w.r.t. the activity at interest. Finding such similarity mea-
sures is one of the current challenges in chemoinformatics [1,4].

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 197–209, 2008.
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The use of graphs as a representation of molecules has become very popular
[5]. Graphs are excellent representations for binary relational data: a vertex
can represent an entity (e.g., an atom), while an edge indicates a relationship
between two entities (e.g., a bond). However, similarity measures between graphs
that aim at using all available structural information often involve the matching
of subgraphs or other combinatorial operations trying to align graphs optimally.
The subgraph isomorphism problem is NP-complete for general graphs [6]. For
this reason, typical approaches have resorted to a transformation of molecules
into vectors. In such transformations either information is lost or the size of the
resulting representation can grow exponentially [4].

Nevertheless, previous theoretical work on graphs has shown that in many
cases, when some constraints on the structure of the graphs hold, efficient match-
ing algorithms exist [7,8]. Sequences, trees and outerplanar graphs (the latter are
graphs which can be embedded in the plane in such a way that all of their ver-
tices lie on the boundary of the outer face) are examples of subclasses of general
graphs. Investigation on the NCI1 database, a collection of datasets containing
over 250,000 chemical compounds, revealed that only 8.8% of these graphs are
trees, while 94.5% of them are outerplanar [8]. Metrics and algorithms able to
deal with outerplanar graphs will thus be much more practical than those han-
dling trees. Recently, a new “block-and-bridge preserving” matching operator
(BBP) for outerplanar graphs was introduced [8]. It is based on the idea that it
only makes sense to match “similar” parts of the graphs. Using this operator,
frequent patterns can be mined efficiently.

The contributions of this paper are twofold. First, we present a new metric
based on the ideas of the BBP matching operator. This metric has three impor-
tant properties: (1) it is computable in polynomial time, (2) as it reflects the
size of the maximum common connected subgraph, it has an intuitive meaning
making results of methods such as instance-based learning interpretable, and (3)
we show that it provides the right level of abstraction in order to discriminate
between molecules. Second, we empirically investigate the practical usefulness of
the BBP matching operator in general.

We start with a discussion of previous work (Section 2). In Section 3 we present
the proposed metric used for the empirical study in Section 4. In Section 5 we
draw conclusions and present future work.

2 Related Work

The earliest work in developing similarity measures for molecules can be found
around the study of quantitative structure-activity relationships (QSAR), which
uses physicochemical properties [9] or linear segments [10] to describe the mo-
lecule in a so-called fingerprint. Once these features are stored in a vector, a
number of similarity measures (e.g., the Tanimoto coefficient [10]) and machine
learning methods can be applied.

1 National Cancer Institute (http://cactus.nci.nih.gov/).

http://cactus.nci.nih.gov/
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There are two main difficulties with these approaches: (1) domain knowledge is
required to select the proper descriptors, and (2) information about the molecular
structure is lost. As there is a common agreement that this structure, i.e. the
arrangement of the atoms and their bonds in structural space, is important
when developing a similarity measure, there has been an increased interest in
relational learning algorithms. One framework in which these approaches have
been developed is that of inductive logic programming (ILP). These algorithms
turn out to work very well on this task [11].

Actually, the ILP representation is much more general than what is needed to
model chemical compounds and to discover substructures. Therefore, a number
of researchers aim at achieving better performance by building systems that use
special-purpose data structures for representing graphs and provide well-chosen
primitives for manipulating them (e.g., [12]). In this way they transform the
problem of binding chemical substructures into that of finding subgraphs in a
graph. Still, finding subgraphs requires subgraph isomorphism matchings. For
this reason, a two-step approach was proposed [4]: first, the complete database
is searched for frequent subgraphs and then, a molecule is represented as a bit-
vector that encodes the occurrences of these subgraphs in the molecule. Since the
graph miner automatically selects the most interesting patterns, this approach
solves the first difficulty mentioned above, while the second is only partly solved.

Following the increased emphasis on structure, graph kernels have been de-
veloped as well [13,1]. Such kernels depend mostly on a decomposition strategy,
which avoids the computational complexity. Ceroni et al. [1] have introduced
the weighted decomposition kernel (WDK), which obtains state-of-the-art re-
sults when used in molecule classification. It is based on a decomposition of the
molecule in a selector (a single vertex) and a context (a fixed-radius subgraph
surrounding the selector). By selecting an appropriate kernel for these struc-
tures, the computation of the WDK kernel remains feasible. In [1], it is also
shown that better predictive performance can be obtained by combining 2D and
3D information. Here we only concentrate on the structural (2D) information.

Raymond et al. [5] give an elaborate overview of existing similarity measures
that are specifically graph-based. Most of these algorithms avoid the computa-
tional complexity by computing approximate values. Raymond et al. [14] also
propose an exact multi-step algorithm which defines a similarity based on com-
puting the maximum common subgraph. This algorithm is theoretically still
NP-complete, but makes use of advanced heuristics to reduce the number of
matchings required.

Our method is based on this idea of graph similarity in function of the max-
imum common subgraph, and thus shares the intuitiveness of [14], although
the latter requires an advanced graph-theoretical problem transformation and is
difficult to implement. Another difference is that, by using the BBP subgraph
isomorphism of [8], we can obtain a polynomial algorithm which only takes into
account a subset of matchings and in this way imposes a bias on the features that
will be used for computing the similarity. By using the graph structure directly,
the two difficulties mentioned above are avoided.
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3 A Metric Based on the Maximum Common Subgraph

Before presenting the algorithm in Section 3.3, we will give some relevant defi-
nitions (Section 3.1), and a formal problem description (Section 3.2).

3.1 Preliminaries

This section gives the relevant definitions necessary to understand the algorithm.
An overview of graph theory can for example be found in [15].

In this paper, we consider undirected labeled graphs. If G is a graph, we
denote with V (G) the set of vertices of G and with E(G) the set of edges of G.
Σ is a finite set of labels and λ : V ∪ E → Σ is a function assigning a label to
each element of V ∪ E. The size | · | : G → R of a graph is a function mapping
a graph to a real number of the form |G| =

∑
x∈V (G)∪E(G) wλG(x), where each

possible label of l ∈ Σ has been assigned a weight wl.
A sequence x0, x1, . . . , xn of vertices is a path from x0 to xn iff {xi, xi+1} ∈

E(G), for all i ∈ [0, n − 1]. A cycle x0, . . . , xn is a path such that x0 = xn. A
path without repeated vertices is a simple path; a cycle without repeated vertices
apart from the start and end vertex is a simple cycle. A graph G is connected
if there is a path between any pair of its vertices; it is biconnected if for any
two vertices u and v of G, there is a simple cycle containing u and v.

A graph is planar if it has a planar embedding, i.e. it can be drawn in the
plane in such a way that no two edges intersect except at a vertex in common.
The regions formed by the edges in a planar embedding are called faces. There is
one unbounded face, which is called the outer face. A biconnected component or
block of a graph G is a maximal subgraph of G that is biconnected. A bridge
is an edge that does not belong to a block. An outerplanar graph is a planar
graph which can be embedded in the plane in such a way that all of its vertices
lie on the boundary of the outer face. An outerplanar graph consists entirely of
blocks and bridges. We will denote the set of all outerplanar graphs with Gop.

Two graphs G and H are isomorphic if there exists a bijection ϕ : V (G) →
V (H) such that for every u, v ∈ V (G) the following holds: (i) {u, v} ∈ E(G) iff
{ϕ(u), ϕ(v)} ∈ E(H), (ii) λG(u) = λH(ϕ(u)), and (iii) if {u, v} ∈ E(G) then
λG({u, v}) = λH({ϕ(u), ϕ(v)}). Isomorphism is an equivalence relation on G.
We will denote the set of all equivalence classes under isomorphism with G≡.

A graph G is subgraph isomorphic to H , denoted G � H , iff G is isomor-
phic to a subgraph of H . The subgraph isomorphism problem, which decides
whether G is subgraph isomorphic to H is known to be NP-complete [6]; this
also holds for outerplanar graphs [16].

A block and bridge preserving (BBP) subgraph isomorphism from G
to H is a subgraph isomorphism from G to H mapping (i) the set of bridges of G
to the set of bridges of H and (ii) different blocks of G to different blocks of H . We
denote that a graph G is BBP subgraph isomorphic to H by G $ H . Contrary
to the subgraph isomorphism problem, the BBP subgraph isomorphism problem
is computable in polynomial time for outerplanar graphs [8]. For trees, which
are special outerplanar graphs (i.e., block-free), the BBP subgraph isomorphism
is equivalent to the subtree isomorphism.
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A common connected subgraph I of two graphs G and H is a connected
graph such that I � G and I � H ; it is a maximum common connected
subgraph (MCCS) when in addition there exists no other common subgraph
J , such that I � J and J is not isomorphic to I. Finding the MCCS between
two arbitrary graphs is NP-hard [6]. However, the MCCS problem for two trees
can be solved in polynomial time [6].

A matching f between sets A and B is a relation such that for all (a1, b1),
(a2, b2) ∈ f : a1 = a2 iff b1 = b2, so each element of A is associated with at most
one element of B and vice versa. A weighted maximal matching problem, also
known as the assignment problem, is an optimization problem where two sets A
and B are given together with a weight function w : A×B → R and the task is
to find a matching m between A and B such that

∑
(a,b)∈m w(a, b) is maximal.

A metric is a function d : Ω × Ω → R for which for any x, y, z ∈ Ω, (i)
d(x, y) = 0 ⇔ x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, z) ≤ d(x, y) + d(y, z).

3.2 Formal Problem Description

The goal of this paper is to develop a metric on G≡
op. Bunke and Shearer [17] pro-

posed a distance function on graphs based on the maximum common connected
subgraph: dbs(G, H) = 1− |MCCS(G,H)|

max(|G|,|H|) , with |G| equal to the number of vertices
in G. They proved that dbs is a metric. We can easily extend this proof to the
more general case where |G| is determined by the function size. Some variants
with similar properties and performances are reviewed in [18].

As computing the MCCS can be used to decide subgraph isomorphism (G is
a subgraph of H iff |E(MCCS(G, H))| = |E(G)|), the argument of [16] can be
used to show that computing the MCCS is NP-hard even in the case of (general)
outerplanar graphs. We therefore consider in this paper a maximum common
connected subgraph under BBP subgraph isomorphism and show that its size
can be computed efficiently. We say that I is an MCCS under BBP subgraph
isomorphism of two outerplanar graphs G and H if I is a maximum connected
graph for which I $ G and I $ H , i.e. blocks are only mapped to blocks,
bridges are only mapped to bridges. From an application point of view, the BBP
subgraph isomorphism can be motivated from the fact that in molecules cyclic
structures and linear fragments usually behave differently, and hence treating
them separately might well be a good thing.

3.3 Algorithm

Our algorithm to compute the size of the MCCS of two outerplanar graphs G and
H is based on a dynamic programming strategy. First, we will generate subgraphs
(which we call children) of G and H , which will be ordered according to their size.
Then, we will compute the size of the MCCS for each pair of generated children,
building on the already computed solutions for pairs of smaller children. In this
way, we obtain a solution for the size of the MCCS of the original graphs.
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Fig. 1. (a) An outerplanar graph Gr. (b) Its NBSS Gr
v . (c) Its BSS G|
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Enumeration of Children. Given an outerplanar graph G, we define two
kinds of subgraphs of G: the non-block-splitting-subgraphs and the block-split-
ting-subgraphs. Intuitively, the former are subgraphs in which a block is either
entirely included in the subgraph or not; the latter are subgraphs which are
created by splitting a block. We call these the children of G. It is convenient to
use Gr

r as a notation for G where vertex r, the root, is distinguished from other
vertices.

With {r, n} a bridge in an outerplanar graph G, we denote with Gr
n the

connected graph containing r that is obtained by removing the bridge (and
hence the part reachable via the bridge). Similarly, with B a block containing
vertex r we denote with Gr

B the connected graph containing r that is obtained
by removing all vertices and edges from the block B except r. Each of these
graphs is a non-block-splitting-subgraph (NBSS) of G.

A block-splitting-subgraph (BSS) is obtained by removing a part of a
block between two vertices. Given the vertices, the orientation (clockwise or
counterclockwise) determines which part is removed. More formally, with u and
v two vertices in the same block of G, G|o[u,v[ denotes the connected graph
including u (and v) that is obtained by removing the vertices between v and u
on the Hamiltonian cycle over all vertices of the block that follow the orientation
o and by removing all edges connected to v except those belonging to the block2.
Fig. 1 shows an outerplanar graph G, and an example of an NBSS and a BSS.

We now show how children of NBSSs and BSSs can be enumerated in a sys-
tematic way. First, consider an NBSS Gr

x (with x a vertex or a block as defined
above). (i) If {r, n} is a bridge of Gr

x, Gr
n is an NBSS child of Gr

x (the subgraph
with root n that remains after removing the bridge). (ii) If B is a block in Gr

x

that contains r as one of its vertices, Gr
B is an NBSS child of Gr

x. (iii) If B is
a block in Gr

x that contains r as one of its vertices, has {r, x0, . . . , xn, r} as its
Hamiltonian cycle (with orientation o) and has {r, xi} (with i < n) as one of its
edges, G|o[xi,r[ is a BSS child of Gr

x. Note that there can be several BSS chil-
dren. Each of them can participate in constructing the MCCS of Gr

x and some
other graph. However, for a particular block B, the different BSS children are
competing: only one of them can contribute to a particular MCCS.

2 Of course an edge is also removed when one of its vertices is removed. We use the
notation“[u, v[” to stress that the edges of u and all vertices between u and v are
kept while those of v are removed. Note that G|o[u,u[ equals G.
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Second, consider a BSS G|o[xi,xj [ (splitting a block B with Hamiltonian cycle
x0, . . . , xn and 0 ≤ i < j < n). (i) If {xi, v} is a bridge, then Gv

xi
is an NBSS

child of G|o[xi,xj[. (ii) If {xi, xk} is an edge with i < k < j, then G|o[xk,xj [ is
a BSS child of G|o[xi,xj[. (iii) If C is a block different from B that has xi as
one of its vertices and if xi, yo, . . . , yn, xi is the Hamiltonian cycle of C (with
orientation o) and if {xi, yj} with j < n is an edge, then G|o[yj,xi[ is a BSS
child of G|o[xi,xj[. Also here the different BSS children associated with the same
block are competing for contributing to an MCCS (in an MCCS their can only
be one type (ii) child and for each block C only one type (iii) child). In Fig. 2
we give some examples of NBSS and BSS children (note that only BSSs of the
orientation � are shown).

We will denote with N (G) the set of all NBSS children of an outerplanar
graph G and with B(G) the set of all BSS children of G. C(G) = N (G) ∪ B(G)
denotes the set of all children of G. Next, we will follow a dynamic programming
approach to compute the size of the MCCS for each pair of children. As we
want to make sure we process all (cg, ch) ∈ C(G) × C(H) in increasing size, we
will first order them lexicographically according to the function size. The base
algorithm described below returns the maximal size of the MCCS containing the
root vertices of both graphs; it is equal to the maximal value of the size of the
MCCSs of all pairs analyzed so far.

Computing the Size of the MCCS of Two Graphs. When computing the
size of the MCCS of two outerplanar graphs G and H , it suffices to compute the
size of the MCCS of Gr

r with r a randomly chosen vertex from G with each graph
in the set {Hs

s | s is a vertex in H} and taking the maximum (the number of
pairs to consider is equal to the number of vertices in the smallest graph). When
creating pairs of BSS children from a pair of NBSS graphs, it suffices to choose
one orientation for the first and to consider both orientations for the second.

We will now describe how to match two children of the same type (either
an NBSS of G and an NBSS of H or a BSS of G and a BSS of H). The key
idea is to consider appropriate combinations of descendants of these children,
and to extend their MCCSs (for which only the roots r of Gr

x and (u, v) of
G|o[u,v[ are important) into an MCCS of these children themselves. The dynamic
programming approach implies that we have access to the size of the MCCS of
all possible pairs of children.
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More formally, an MCCS of two NBSSs Gr
i and Hs

j is a maximal connected
graph St

t for which there are two BBP subgraph isomorphism mappings ϕG :
St

t → Gr
i and ϕH : St

t → Hs
j such that ϕG(t) = r and ϕH(t) = s. An MCCS of

two BSSs G|og [ug,vg [ and H |oh[uh,vh[ is a maximal connected graph S|os[us,vs[ for
which there are two BBP subgraph isomorphism mappings ϕG : S|os[us,vs[ →
G|og [ug,vg [ and ϕH : S|os[us,vs[ → H |oh[uh,vh[ such that ϕG(us) = ug, ϕg(vs) = vg,
ϕh(us) = uh and ϕh(vs) = vh.

In order to find the size of an MCCS of two NBSSs Gr
i and Hs

j (whose roots
have the same label), we make a weighted maximal matching between the set
of children of Gr

i and the set of children of Hs
j (matching BSSs with BSSs and

NBSSs with NBSSs, and checking that the connecting edges have identical labels)
using Munkres’ algorithm [19]. In order to find the size of an MCCS of two BSSs
G|oG[xi,r[ and H |oH [yj,s[ (splitting a block BG and a block BH respectively),
where r and s have the same label, the MCCS size is the result of the best
matching between the MCCS size of the children G|oG[xi,xk[ and H |oH [yj,yl[ (in
which the attached NBSSs are also matched). If {r, xi} and {s, yj} are the only
remaining edges of both blocks and they have identical labels, wλ({xi,r}) is added
to the MCCS size.

One can show that this algorithm works correctly by verifying for every newly
computed size of the MCCS of two given relevant subgraphs that this value is
a correct increment of the size of the MCCS of their earlier computed children.
One can also prove the following theorem:

Theorem 1. There is an algorithm computing the size of the maximum common
subgraph under BBP subgraph isomorphism of two given outerplanar graphs in
time O(|V (G)|5/2.|V (H)|5/2).

Proof sketch: The result follows from counting the number of relevant graphs
to consider and using known bounds on the running times of the algorithms used
in the dynamic programming step (e.g., a maximal matching can happen in cubic
time [19]). Due to space restrictions, we omit a full proof of the correctness and
the time complexity of the algorithm.

4 Experiments

In this section, we want to answer the following questions:

1. How does the predictive performance of the BBP-based metric compare to
state-of-the-art methods? (Q1)

2. Is it possible to boost performance of other classification methods when using
the BBP subgraph isomorphism as matching operator? (Q2)

In order to answer Q1, we will compare the BBP-based metric to a metric based
on 2D fingerprints [10] and a metric based on the WDK kernel [1], which we
will evaluate in instance-based learning (IBL). As for Q2, since the predictive
performance of the BBP matching operator introduced in [8] has never been
investigated before, evaluating the BBP matching operator is interesting in its
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own. Therefore, we will compare different matching operators when used in sup-
port vector machines (SVMs) [20], a method that has become very popular for
the classification of molecules [1,4,13]. The purpose of this experiment is inves-
tigating whether the BBP subgraph isomorphism has a larger predictive power
compared to the general one, rather than obtaining state-of-the-art results.

4.1 Datasets

The NCI dataset has been made publicly available by the National Cancer In-
stitute and provides screening results for the ability of more than 70,000 com-
pounds to suppress or inhibit the growth of a panel of 60 human tumour cell
lines. The datasets used here correspond to the parameter GI50, the concentra-
tion that causes 50% growth inhibition. For each cell line, approximately 3,500
compounds are provided together with information on their cancer-inhibiting
action, which defines a binary classification problem. We use the datasets of
Swamidass et al. [13]; they are available from these authors upon request. From
these datasets we have removed the non-outerplanar examples (∼10%).

4.2 Method

First, we want to compare the performance of different metrics. Next to the
proposed BBP-based metric (in which wλG(x) is set to 1 if x ∈ V (G), 0 if x ∈
E(G), defining the size of a graph as its number of vertices), we constructed a
metric based on 2D fingerprints and a metric based on the WDK kernel. For
each molecule, we constructed a 1024 FP2-fingerprint using OpenBabel v2.1.13

and we defined a metric on these fingerprints using the Tanimoto coefficient,
which is still considered to produce state-of-the-art results for virtual screening
[10]. Although the WDK kernel was not intended to be used in this way, for
reasons of comparison we defined a metric according to the following formula:
d2(x, y) = κ(x, x)− 2κ(x, y) + κ(y, y), with κ the WDK kernel function.

We used the 3 metrics in instance-based learning (IBL): in order to classify a
given molecule, we selected the k neighbor molecules that are closest according
to the metric (we chose k = 11, which was optimal for all metrics). For each
molecule, we obtained a prediction equal to the percentage of positive votes of
its neighbors. In this way, we can rank the predictions and compute the area
under the ROC curve (AUROC). We used leave-one-out cross-validation.

For the second experiment involving SVMs, we have transformed molecules
into bit-vectors using two approaches. The first approach generates frequent out-
erplanar subgraphs based on the BBP subgraph isomorphism using the mining
algorithm FOG presented in [8]. The second approach generates frequent sub-
graphs based on the general subgraph isomorphism, using an efficient implemen-
tation [21] of the gSpan algorithm [12]. In both cases, the bit-vector encodes the
occurrence of the frequent patterns. Since the earlier generated 2D fingerprints
are also bit-vectors, we added them to the comparison. These vectors contain

3 http://openbabel.sourceforge.net

http://openbabel.sourceforge.net


206 L. Schietgat et al.

69
70
71
72
73
74
75
76
77
78

A
U

R
O

C

SN
B

_7
5

H
L

_6
0_

T
B

SF
_5

39
H

O
P_

92
H

C
C

_2
99

8
U

A
C

C
_2

57
C

C
R

F_
C

E
M

E
K

V
X

O
V

C
A

R
_5

T
K

_1
0

SK
_M

E
L

_2
U

O
_3

1
M

O
LT

_4
SK

_M
E

L
_2

8
H

C
T

_1
5

N
C

I_
H

22
6

IG
R

O
V

1
N

C
I_

H
32

2M
SK

_O
V

_3
SF

_2
95 SR

R
PM

I_
82

26
SN

12
C

K
_5

62
O

V
C

A
R

_4
K

M
12

O
V

C
A

R
_8

M
A

L
M

E
_3

M
SW

_6
20

H
O

P_
62

C
A

K
I_

1
M

C
F7

A
49

8
R

X
F_

39
3

M
14

U
A

C
C

_6
2

N
C

I_
H

52
2

78
6_

0
H

S_
57

8T
N

C
I_

H
23

M
D

A
_M

B
_2

31
H

T
29

O
V

C
A

R
_3

SF
_2

68
N

C
I_

H
46

0
A

54
9_

A
T

C
C

C
O

L
O

_2
05

N
C

I_
A

D
R

_R
E

S
D

U
_1

45
SN

B
_1

9
T

_4
7D

A
C

H
N

U
25

1
M

D
A

_M
B

_4
35

M
D

A
_N

B
T

_5
49

SK
_M

E
L

_5
L

O
X

_I
M

V
I

H
C

T
_1

16
PC

_3

IBL-BBP
IBL-FP
IBL-WDK

Fig. 3. Comparison of the performance of the IBL classifiers on NCI60

1024 features, and we have aimed at obtaining a similar number of features by se-
lecting an appropriate frequency threshold for the mining algorithms (for FOG:
4% leading to 1376 patterns; for gSpan: 5% leading to 1292 patterns). Next to
the propositionalization approaches, we have also compared to the WDK kernel,
which we have run on our data using the settings provided by the authors of [1].

We used the SVMlight implementation [20]. For all methods we used exactly
the same settings, which involved applying a polynomial kernel of degree 2 (used
in [1]), using a 10-fold stratified cross-validation. For each fold, we have tuned
the C parameter by holding out a development set from each training fold of the
cross-validation. Finally, we have combined the predictions from each test fold,
ranked all the predictions and computed again the AUROC.

4.3 Results

In Fig. 3 we have plotted the AUROC of the IBL classifiers. Under the null
hypothesis that IBL-BBP is not better than the other classifiers, we expect an
equal number of wins and losses. Instead, we found that IBL-BBP performed
consistently better (60 wins out of 60) than the other two methods. Given these
results4, we can reject the null hypothesis with great confidence, and we conclude
that the BBP-based metric is the best metric for IBL on molecular datasets.

Fig. 4 shows a similar comparison between the SVM-based classifiers. If we
compare SVM-BBP to SVM-gSpan, we can conclude that the features generated
by the BBP matching operator have a larger predictive power. This can be
explained by the fact that SVM-BBP uses a more constrained language, leading
to less redundant patterns. Next, SVM-BBP is also significantly better than
SVM-WDK (48 wins/9 losses/3 ties). Finally, SVM-BBP performs equally well

4 Generalization over cell lines follows from the win/loss-ratio; generalization to other
molecules from the same population follows from the fact that the average AUROC
is significantly better at the 1% level for samples of 3,500 molecules.
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Fig. 4. Comparison of the performance of the SVM classifiers on NCI60

as SVM-FP (32 wins/28 losses). Additional experiments show that it is still
possible to boost the performance of SVM-BBP and SVM-gSpan by lowering
the support threshold (and in this way obtaining more patterns), but this does
not change the above conclusions.

In summary, we have shown that, on these datasets, our metric outperforms
previously published results, and more generally that the BBP matching oper-
ator shows good performance when used to generate features (instead of when
used for a metric). Therefore, depending on the situation (e.g., the number of ex-
amples) and the user’s preferences (e.g., the interpretability of the predictions),
either a BBP-metric (IBL) or BBP-generated features can be good choices.

5 Conclusions and Further Work

In this paper, we have introduced a polynomial-time algorithm computing the
MCCS of two outerplanar graphs under the BBP subgraph isomorphism. Second,
we have investigated the performance of the BBP matching operator.

It turns out that this BBP-based metric outperforms previously published
methods. One reason may be that dealing differently with cycles and linear
fragments makes sense in chemical applications. Moreover, it is more intuitive
than other metrics and graph kernels and although it uses the original graph
structure, it is still efficiently computable. We can conclude that BBP subgraph
isomorphism is an interesting matching operator for small molecules.

Since a fraction of the molecules in the NCI database cannot be represented by
outerplanar graphs, it is useful to investigate how the ideas of the BBP matching
operator can be extended to non-outerplanar graphs. In further future work, we
plan to investigate other classes of graphs which would be suitable to represent
molecules (e.g., graphs having a bounded treewidth) and for which we can design
polynomial algorithms.
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Abstract. The article introduces an original problem of knowledge dis-
covery from chemical reaction databases that consists in identifying the
subset of atoms and bonds that play an effective role in a given chemical
reaction. The extraction of the resulting characteristic reaction pattern is
then reduced to a graph-mining problem: given lower and upper bound
graphs gl and gu, the search of best patterns in an interval of graphs
consists in finding among connected graphs isomorphic to a subgraph
of gu and containing a subgraph isomorphic to gl, best patterns that
maximize a scoring function and whose score depends on the frequency
of the pattern in a set of examples. A method called CrackReac is then
proposed to extract best patterns from intervals of graphs. Accuracy and
scalability of the method are then evaluated by testing the method on
the extraction of characteristic patterns from reaction databases.

1 Introduction

A possible model for representing molecules is to use molecular graphs: a molec-
ular graph is a connected labeled graph whose vertices represent atoms labeled
by their chemical element (C for carbon ...) and whose edges represent bonds
labeled by their type (single, double, triple, or aromatic). Chemical reactions
(or simply reactions) are physical transformations of molecular structures that
consist in breaking, creating, or modifying types of bonds. A reaction can be
represented by a chemical equation, as illustrated on Fig. 1. In order to setup
new synthesis pathways, chemists use knowledge of reactions they learned from
experiments. This knowledge consists of generic synthesis methods that can be
applied to new synthesis contexts. Instances of a synthesis method are reactions
that share a common reaction pattern along with specific environmental con-
ditions. Figure 2(a) shows the reaction pattern of the synthesis method whose
reaction of Fig. 1 is an instance of. Discovering new synthesis methods and or-
ganizing knowledge about known methods are two key issues for the organic
� Authors wish to thank Gilles Niel at ENSCM in Montpellier, France that has selected

synthesis methods and designed datasets.
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Fig. 1. A chemical equation of type m1 + m2 → m3 + m4

Fig. 2. Reaction pattern of the Sonogashira synthesis method (a) and atom mapping
(b) of pattern with equation of Fig. 1

synthesis industry. Both tasks could be eased by knowledge discovery systems
as reaction databases already describe millions of molecule synthesis. For this
reason the underlying problem of reaction clustering has been a major research
topic of computational chemistry (cf for instance [1,2,3]).

The present article introduces an original problem of knowledge discovery
closely related to reaction clustering: the problem consists in identifying the
subset of bonds and atoms that play an effective role in the course of a reaction.
This subset forms the so called characteristic pattern of the reaction and repre-
sents a potential synthesis method applicable to other synthesis problems. This
application is then reduced to a graph-mining problem: given lower and upper
bound graphs gl and gu, the search of best patterns in an interval of graphs con-
sists in finding among connected graph patterns contained in gu and containing
gl, best patterns that maximize a scoring function and whose score depends on
the frequency of the pattern in a set of examples.

This problem is related to frequent graph-mining that consists in determining
the set of connected graph patterns that occur a minimum number of times in a
set of examples of graphs. As existing frequent graph-mining algorithms [4,5,6,7]
do not integrate the interval constraint, the article proposes a new method called
CrackReac to address the problem of mining graph patterns bounded by an inter-
val. While the method borrows some notions and data structures from frequent
graph-mining algorithms, like embedding lists [7], the method is closer in its
principles to selective pattern searching algorithms like Subdue [8], where the
search is not exhaustive but rather the purpose is to output a limited num-
ber of informative patterns. Compared to existing graph searching algorithms,
CrackReac brings an additional constraint as patterns are taken within intervals
of graphs. This not only simplifies the pattern enumeration algorithm but also
introduces a structural constraint on score maximization.
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Main contributions of the article are an original graph-mining problem along
with its application to chemistry. Whereas graph-mining (cf survey [9]) and In-
ductive Logic Programming (e.g [10,11]) have already been applied to molecular
graphs, the article is one of the first, to the best of the authors’knowledge, to
describe an application of graph-mining to chemical reaction databases. To this
end, the article first formalizes in Sect. 2 the problem of extracting characteristic
patterns of reactions and provides application-specific properties that are needed
to reduce the problem to the search of best patterns in an interval of graphs.
Section 3 defines the problem of searching best patterns in an interval of graphs,
provides an example of scoring function and gives the outlines of the CrackReac
method so that the problem of extracting characteristic patterns of reactions
gets solvable. Section 4 details results of experiments on reaction databases run
with the previous method and scoring function.

2 The Extraction of Characteristic Patterns of Reactions

Before developing the problem further, some common definitions are recalled: a
labeled graph g is defined by a set V (g) of vertices and a set E(g) of pairs of
vertices called edges. In addition, every vertex or edge is mapped to a label taken
from a given set. Two labeled graphs g1 and g2 are isomorphic if there exists a
bijection µ : V (g1) → V (g2) that preserves vertex/edge labeling and adjacency
(i.e {v1; v2} ∈ E(g1) ⇔ {µ(v1); µ(v2)} ∈ E(g2)). A graph g1 is a subgraph of g2

(denoted g1 ⊆ g2) if V (g1) ⊆ V (g2) and E(g1) ⊆ E(g2). A graph g1 is included
in graph g2 wrt the isomorphic subgraph relation, which we denote by g1 ⊆G g2,
if there exists a subgraph of g2 that is isomorphic to g1. A (closed) interval of
graphs [gl; gu] is the set of graphs g comprised between a lower bound graph gl

and an upper bound graph gu: [gl; gu] = {g|gl ⊆G g ⊆G gu}. Given a dataset
D of labeled graphs, the (relative) frequency of a graph g is the proportion of
graphs g′ in D such that g is included in g′ wrt ⊆G. A graph pattern is frequent
relatively to a threshold fmin if its frequency is larger or equal than fmin.

2.1 Data Representation

Reaction databases specify reactions by their reaction patterns:

Definition 1. A reaction pattern is a 4-uplet (R,P , λR, λP) where connected
components of graph R (resp. P) are molecular graphs of initial (resp. result-
ing) molecules of a molecule transformation and where indexing functions λR :
V (R) → N and λP : V (P) → N locate the same atom in R and P: vertices v1

in R and v2 in P represent the same atom if and only if λR(v1) = λP (v2).

Atom mappings are specified on Fig. 1 by indexes next to each atom. The pattern
of a reaction is called a chemical equation. Chemists also use reaction patterns
to represent families of reactions thanks to a subsumption relation:

Definition 2. Reaction pattern P1 = (R1,P1, λR1 , λP1) subsumes reaction pat-
tern P2 = (R2,P2, λR2 , λP2) and is denoted by P2 $R P1, if and only if R1 ⊆G
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R2 and P1 ⊆G P2 and if associated injective morphisms θR : V (R1) → V (R2)
and θP : V (P1) → V (P2) are consistent with atom mapping functions:

∀s1 ∈ V (R1), ∀s2 ∈ V (P1), λR1(s1) = λP1(s2) ⇔ λR2(θR(s1)) = λP2(θP(s2))

Reaction pattern of Fig. 2(a) subsumes chemical equation of Fig. 1 wrt to atom
mapping of Fig. 2(b). Reaction patterns can be equivalently represented by con-
densed reaction graphs introduced by Vladutz [12]:

Definition 3. The reaction graph G(P ) of a reaction pattern P =(R,P , λR, λP)
is equal to the graph R where bonds created by the reaction (i.e in E(P) but not
in E(R)) have been added with respect to atom mappings and where every bond
of G(P ) has been labeled by the ordered pair (lR, lP) of labels of mapped bonds in
R and P (with a special label 0 to denote non existing bond in R or P).

For instance, Fig. 3 gives the reaction graph of reaction pattern of Fig. 1. The
representation model of reactions graphs is equivalent to the model of reaction
patterns as the transformation is reversible. While reaction graphs have initially
be introduced as a compact representation of reactions, reaction graphs hold
interesting properties within the context of graph-mining:

Fig. 3. Reaction graph of equation of Fig. 1

Property 1. The order of reaction patterns relatively to $R is equivalent to the
order of equivalent reaction graphs ordered by the isomorphic subgraph relation
⊆G: P1 $R P2 ⇔ G(P2) ⊆G G(P1).

Property 2. Reaction graphs are connected graphs.

Because reaction graphs are fully compliant with graph-mining requirements
(i.e connected and ordering relation of interest is ⊆G), the reaction patterns are
subsequently modeled by their equivalent reaction graphs.

2.2 Problem Description

Every reaction is characterized by the pattern of its bond transformation, called
the center of reaction: the center Pc(E) of equation E is the reaction pattern
made of bonds broken, created, or modified during the reaction along with in-
cident atoms. The reaction graph of the center is denoted Gc(E) = G(Pc(E)).
Center of reaction of Fig. 1 is given on Fig. 4. Chemists have observed that, given
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Fig. 4. Center (a) and reaction graph of the center (b) of reaction of Fig. 1

Fig. 5. The interval constraint: Gc(E) (a), Gm(E) (b) and G(E) (c)

a reaction of equation E, a set of molecules presenting the same topological en-
vironments as the ones that atoms of Pc(E) have in the initial molecules of E,
generally reacts according to the transformation pattern of Pc(E), all other reac-
tion conditions (e.g catalysts, solvents ...) being equal. The minimal environment
of the center Pc(E) that is required for the transformation to occur defines a re-
action pattern called here a characteristic reaction pattern and denoted Pm(E).
Chemists search for these generic reaction patterns along with the required re-
action conditions in order to reuse them as synthesis methods in new synthesis
problems. As the characteristic pattern of a reaction necessarily contains the
center of the reaction, the pattern Pm(E) and thus the characteristic reaction
graph Gm(E) = G(Pm(E)) are constrained to be within intervals:

Property 3. E $R Pm(E) $R Pc(E) or equiv. Gc(E) ⊆G Gm(E) ⊆G G(E)

The interval of graphs associated to the example of Fig. 1 is given on Fig. 5. The
motivation of the present work is to extract from the equation E of a reaction its
characteristic reaction pattern Pm(E), by mining reaction patterns in a dataset
D of reaction graphs. For example, reaction pattern of Fig. 2(a) is to be extracted
from equation of Fig. 1. Intuitively given an equation E of a reaction, the more
a reaction pattern P subsuming E wrt $R is simultaneously significant by its
size and frequent in D, the more likely P is to be characteristic of the synthesis
method underlying E. However the larger P is, the less frequent it is in the
dataset D so that the problem appears as finding the best compromise between
size and frequency of patterns. Assuming the quality of the compromise can be
assessed by an heuristic scoring function s that maps a reaction graph G to a
score s(G), the problem consists in searching Gm(E) as the reaction graph of
highest score within the interval [Gc(E);G(E)].

3 The Search of Best Patterns in Intervals of Graphs

3.1 Problem Definition

The previous section leads to the following graph searching problem:
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Definition 4. Given a list ((gli , gui)) of pairs of lower and upper bound graphs
and given a scoring function s, the search of best patterns in intervals [gli , gui ]
of graphs consists in finding for every index i the best graph pattern gbesti that
maximizes s(g), provided that graph g is connected and gli ⊆G g ⊆G gui .

Various scoring functions can be considered in the context of the considered
application. The present article focuses on a scoring function similar to the one
used by Subdue [8]. This function is based on the Minimum Description Length
principle that considers learning as a problem of compressing reality into models:
given a graph pattern g as a model to describe a dataset D, Subdue contracts
every occurrence of g in D by a specific vertex. The best compressing pattern g is
the one that maximises the saved space roughly equal to product |g| ·n(g) of the
size |g| (e.g number of vertices and edges) of g by the number n(g) of occurrences
of g in D. Similarly, the better a reaction pattern describes equations of the
same reaction center, the more likely this pattern is characteristic of a synthesis
method. This leads to the following definition of scoring function:

Definition 5. The function si of a graph g relatively to a dataset D is:

si(g,D) %→ (I(g)− I(gl)) · f(g,D) with

I(g) =
∑

v∈V (g)

i(lv(v)) +
∑

e∈E(g)

i(le(e)) where i(l) = − log2

⎛⎜⎝ n(l)∑
l′∈Lv∪Le

n(l′)

⎞⎟⎠
and where f(g,D) is the relative frequency of pattern g in dataset D wrt ⊆G ,gl

is the minimal graph that is known to be contained in g wrt ⊆G, I(g) is the sum
of information carried by every vertex v ∈ V (g) of label lv(v) and by every edge
e ∈ E(g) of label le(e), i(l) is the information of label l, and n(l) is the number
of vertices or edges labeled by l in dataset D.

Compared to the function |g| ·n(g) used in [8], the function si takes into account
two additional effects: first the replacement of pattern size factor s(g) by pattern
information I(g) increases the weight of naturally unfrequent labels. Second
the term I(g) is replaced by I(g) − I(gl) also equal to the information gain
I(g|gl ⊆G g) as g is already known to contain gl.

3.2 A First Solution Based on Existing Graph-Mining Algorithm

Given a list (Ii) = ((gli ; gui)) of lower and upper bound graphs and given a
scoring function s whose score s(g) depends on the frequency of pattern g in a
dataset D of graphs, this section shows how to compute the best pattern gbesti

of each interval Ii using any existing frequent graph-mining algorithm.
One obvious solution to search best patterns in an interval [gli , gui ] of graphs

is to produce every connected graph pattern of frequency (at least) 1 in the
singleton dataset {gui} using an existing frequent graph miner, then to remove
patterns that do not contain a subgraph isomorphic to gli and finally to compute
frequency in D and then score of every remaining pattern. However this method
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does not work as a typical reaction graph has millions of subgraphs (e.g the
small reaction graph of Fig. 3 has already about 685000 subgraphs). A better
method is, given an arbitrary threshold fmin, to:

1. Partition the set of intervals I = {Ii} of graphs into parts Ij = {(glj , guij )}
so that every interval in set Ij shares the same lower bound graph glj .

2. For each part Ij , extract from D the subset Dj of graphs that contain a
subgraph isomorphic to glj .

3. Mine frequent graphs Fj of Dj whose relative frequency is at least fmin.
4. Extract subset F ′

j of Fj of graph patterns that contain at least one subgraph
isomorphic to glj .

5. Compute for each pattern g ∈ F ′
j of frequency f(g) its score s(g, f(g)).

6. For each upper bound graph guij in Ij , extract from F ′
j the subset F ′′

ij of
graph patterns that are isomorphic to a subgraph of guij .

7. For each interval Ii of Ij , return pattern gbesti of maximal score within F ′′
ij .

Prefiltering of step 2 allows to keep fmin relatively high (e.g equal to 0.8) so
that frequent graph-mining in step 3 remains tractable. However the observed
performance bottleneck of the method is not step 2 but step 6, that requires
for each interval to detect which of the many frequent patterns are isomorphic
to subgraphs of gui . This observation has raised the question whether searching
directly the best patterns in an interval of graphs provides better performance.

3.3 The Algorithm CrackReac to Mine Intervals of Graphs

The main particularity of CrackReac is the way patterns are generated: the algo-
rithm CrackReac replaces the interval constraint gl ⊆G g ⊆G gu on pattern g by
a disjunction of n constraints g′li ⊆ g ⊆ gu where ⊆ is the strict subgraph rela-
tion and where the n graphs (g′li)1≤i≤n are all subgraphs of gu isomorphic to gl.
This rewriting is possible by definition as for each pattern g′ ⊆G gu there exists
at least one subgraph g of gu that is isomorphic to g′. This apparently insignif-
icant change induces however strong consequences: generated patterns are not
anymore isomorphically unique graph patterns, like with frequent graph miners,
but simply connected subgraphs of gu containing a subgraph isomorphic to gl.
The generation then gets simpler (see below) and faster (per generated pattern)
than generating non isomorphic patterns as it does not require to compute any
canonical representant of patterns. However the disadvantage is that distinct but
isomorphic subgraphs of gu induce duplicated frequency computations.

In practice the current pattern g is built by exploring the pattern space in
a depth first search order, applying sequentially extensions to an initial pat-
tern made of any subgraph g′li of gu isomorphic to gl. Depth first search is a
requirement to compute efficiently pattern frequencies using embedding lists as
described in [7]. As pattern g must remain connected, possible extensions are
either connected vertex extensions CVE(le, lv, v) connecting a new lv-labeled ver-
tex to vertex v of g with a new le-labeled edge or edge extensions EE(le, v1, v2)
connecting vertices v1 and v2 of g with a new le-labeled edge. Extensions of g can
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be efficiently enumerated by a constant time iterator: as g is a non-empty con-
nected subgraph of gu, every edge {v1; v2} ∈ E(gu) \E(g) incident to g (i.e with
v1 ∈ V (g)) is in bijection with one extension ext({v1; v2}) of g. Only the type
of extension ext({v1; v2}) varies with the current development of g: if v2 ∈ V (g)
then ext({v1; v2}) is EE(l({v1; v2}), v1, v2) else it is CVE(l({v1; v2}), l(v2), v1).
The pseudo-code 1 details how the recursive procedure of CrackReac develops
the current pattern g. The searching strategy extends g only if on line 1 current
score is not less than a factor 1− εbranch of the best score on the current branch
(i.e set of patterns along the recursive path up to g) and than a factor 1− εlevel

of the best score on the current level (i.e set of already mined patterns of the
same number of edges as g). Line 2 forbids extensions whose branch has already
been developed so that every valid subgraph of gu is generated at most once.

Algorithm 1. The procedure CrackReac (g, sg, Mbranch, d)
Data: Input interval (gl, gu), dataset D, scoring function s
Input: Current subgraph g, score sg, branch highest score Mbranch and depth d
Result: Best pattern gbest and its score sbest are global variables
Array Mlevel[] of level maxima is a global variable ;
Set L ← ∅ ;
forall extension e of g in G do

Frequency f ← freq(e(g),D) ; Score se ← s(e(g), f) ;
L ← L ∪ {(e, se)} ;
Mlevel[d] ← max(Mlevel[d], se)

forall (e, se) ∈ L do
if se ≥ max((1 − εbranch) · Mbranch, (1 − εlevel) · Mlevel) then1

CrackReac (e(g), se, max(Mbranch, se), d + 1) ;
disable(e)2

forall (e, se) ∈ L do
enable(e)

if sg > sbest then
sbest ← sg ; gbest ← g

4 Experiments

Experiments have been conducted on examples of synthesis methods of Sono-
gashira, asymmetric Sharpless epoxydation and aceto-acetic ester (cf patterns
on Fig 6). Tests aim at assessing accuracy of the method and comparing perfor-
mance of CrackReac with method proposed in Sect.3.2 based on existing graph-
mining methods. Accuracy of a function score is the property that its maxima
occur for expected characteristic patterns. A function score is robust if it remains
accurate when the variety of synthesis methods increase in the database. Accu-
racy is difficult to define formally from a random set of reactions as expected
characteristic patterns are unknown. However it is possible to compute accuracy
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Fig. 6. Patterns of Sharpless epoxidation (a) and aceto-acetic ester synthesis (b)

Fig. 7. Characteristic patterns of Sharpless epoxydation for o = 500 and o = 10000 (a
and b) and of aceto-acetic ester synthesis for o = 10000 (c)

for a given synthesis method whose experts have provided the reaction pattern
based on the following definition of error:

Definition 6. Given a subgraph g of an input graph ginput and a reference graph
gref that is assumed to be isomorphic to a number of subgraphs (grefi) of ginput,
the number of false positive (resp.negative) bonds of g relatively to grefi is
ε+

i = |E(g) \ E(grefi)| (resp. ε−i = |E(grefi) \ E(g)|). The error of g relatively
to gref is then ε(g, gref , ginput) = min

i
(ε+

i + ε−i ). The positive (resp. negative)

error is the value of ε+
i (resp. ε−i ) for the graph grefi that minimizes the error.

Given the reaction graph gref of a given synthesis method, the accuracy of the
characteristic subgraph gbest of ginput is assessed by the error ε(gbest, gref , ginput).
Every elementary test consists in searching characteristic graphs of i input in-
stances of a given method m from a dataset composed of e examples of method
m merged to o other randomly selected reactions1. Number e of example reac-
tions has been set to a low realistic value of 10 whereas number i of input graphs
has been set to 100. Clustering of reactions is efficient as the 100 input reactions
are distributed in average (rel. to o) over a number of 6, 3.5 and 7 characteristic
patterns for each of the three synthesis methods. Positive, negative and total
1 Datasets can not be distributed but can be retrieved from SymyxR©/MDLR© commer-

cial reaction databases ChemInform and RefLib, selecting mono-product reactions
containing given synthesis method patterns and with an existing non-zero yield.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Errors and processing times for Sonohashira (a and b), Sharpless epoxydation
(c and d) and aceto-acetic ester synthesis (e and f)

errors are given on Fig. 8(a), Fig. 8(c) and Fig. 8(e) as functions of the number
o of other reactions. Positive and negative errors grow step by step when the
number o of other reactions increases. Characteristic patterns are found equal
or very similar to the expected patterns for small o values but tend to shrink
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towards the center of reaction when o exceeds some thresholds as additions of
other concurrent methods with the same reaction center increasingly perturbate
values of scoring function: whereas the Sonogashira pattern is preserved up to
10000 other reactions, the epoxydation pattern is dismantled for o ≥ 750 (cf
Fig. 7(a) and Fig. 7(b)). Error of ester synthesis remains low and constant as no
concurrent methods appear in other available reactions (cf Fig. 7(c)). From a per-
formance perspective, Fig. 8(b), Fig. 8(d) and Fig. 8(f) (run on a T5600 1,8 Ghz
for i = 100, e = 10) compare total processing times of CrackReac stand-alone,
the method of Sect.3.2, using Gaston [7] with fmin = 0.8, and the CrackReac
method said with preprocessing, run on the same partitions (Ij) and datasets
(Dj) of Sect.3.2. CrackReac with preprocessing appears to be the fastest while
it is not obvious which of the two other methods is second.

5 Conclusion

The problem of extracting characteristic patterns of reactions has lead to a
graph-mining problem whose requirements do not match existing graph-mining
algorithms. The proposed CrackReac method has given sensible results for the
considered application without sacrificing speed or scalability: CrackReac pro-
vides the characteristic pattern of a reaction in hundredths to tenths of a second
while mining thousands of reactions. However the tested scoring function pro-
vides limited robustness and suggests to search for a function that integrates
domain knowledge to better reflect the notion of characteristic pattern.
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Abstract. Cluster ensemble methods have recently emerged as power-
ful techniques, aggregating several input data clusterings to generate a
single output clustering, with improved robustness and stability. This
paper presents two new similarity matrices, which are empirically eval-
uated and compared against the standard co-association matrix on six
datasets (both artificial and real data) using four different combination
methods and six clustering validity criteria. In all cases, the results sug-
gest the new link-based similarity matrices are able to extract efficiently
the information embedded in the input clusterings, and regularly suggest
higher clustering quality in comparison to their competitor.

Keywords: cluster ensembles, pairwise similarity matrix, cluster rela-
tion, link analysis.

1 Introduction

1.1 Motivation

Data clustering sets out to discover data groupings, or clusters, such that data
in the same cluster are more similar to each other than to those in different clus-
ters. Application domains include bioinformatics, machine learning, data mining,
information retrieval and pattern recognition, and the ability to produce high
quality clusters is highly valued. Since there are a large number of clustering
algorithms [1], and since the No Free Lunch theorem [2] suggests there is no
single, supreme algorithm for discovering all cluster shapes and structures, it
is extremely difficult for users to decide which algorithm would be the most
effective for a given set of data. Cluster ensemble methods set out to mitigate
this problem by allowing the user to perform various clusterings, and then uses
them all to produce a higher quality output than any individual clustering. This
paper suggests two new cluster ensemble methods for improving cluster value,
and validates the improvement against several known datasets.

1.2 Overview

This paper build on the ideas of cluster ensmbles, including the feature-based ap-
proach that transforms the problem of cluster ensembles to clustering categorical
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data [3], graph-based algorithms that employ a graph partitioning methodology
[4], and the pairwise approach that makes use of the co-association matrix to
represent relationships between all pairs of data points [4], [5].

Methods for generating two new pairwise similarity matrices are presented,
named Connected-Triple based similarity (CTS) matrix and SimRank based sim-
ilarity (SRS) matrix. Both are informed by the basic conjecture of taking into
consideration as much information, embedded in a cluster ensemble, as possible
when finding similarity between data points. To discover similarity values, they
consider both the associations among data points as well as those among clusters
in the ensemble using link-based similarity measures.

The paper is organized as follows. Section 2 contains a formal definition of the
cluster ensemble problem, and a review of related works on both the pairwise
cluster ensemble and link analysis. Section 3 describes two powerful new similar-
ity matrices. Section 4 provides the results of the experimental evaluation of the
new matrix methods under a variety of conditions. Section 5 contains analysis
and suggestions for further work.

2 Background

2.1 Foundational Concepts

Problem Formulation. Let X = {x1, x2, . . . , xN} be a set of N data points
and let Π = {π1, π2, . . . , πM} be a set of M base clustering results, which will be
referred to as a cluster ensemble. Each base clustering result (called an ensemble
member) returns a set of clusters πi = {Ci

1, C
i
2, . . . , C

i
ki
}, such that

⋃ki

j=1 Ci
j = X ,

where ki is the number of clusters in the i-th clustering. For each x ∈ X , C(x)
denotes the cluster label to which the data point x belongs. In the i-th clustering,
C(x) = j if x ∈ Ci

j . The problem is to find a new partition π∗ of a data set X
that summarizes the information from the cluster ensemble Π .

Cluster Ensemble Framework. The general process for creating a cluster
ensemble is shown in Figure 1. Multiple input clusterings, known as ensemble
members, are aggregated to form a final partition. There are two stages: (i)
generating the cluster ensemble, and (ii) producing the final partition (normally
referred to as consensus function).

The cluster ensemble is typically built by exploiting both different cluster
models and different data partitions. Methods may use different cluster algo-
rithms or a single algorithm with several sets of parameter initialization, such
as cluster centers and number of clusters used in k-means method [3], [5], [6].
A cluster ensemble can also be achieved by applying manifold subsets of ini-
tial data to base clusterings [7]. In addition to using one of these methods, any
combination of them can be applied as well [4].

The consensus functions can be categorized into: (i) feature based, (ii) graph
based and (iii) pairwise approaches. The first technique transforms the problem
of cluster ensembles to clustering categorical data [3], [6]. The second methodol-
ogy represents an ensemble as a graph, which is divided into a definite number of
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Fig. 1. The basic process of cluster ensembles. It first applies multiple base clusterings
to a dataset X to obtain diverse clustering decisions (π1 . . . πM ). Then, these solutions
are combined to establish the final clustering result (π∗) using a consensus function.

approximately equal-sized partitions [4], [8]. The last approach creates a matrix,
containing the pairwise similarity among data points, to which similarity-based
clustering algorithms can be applied [4], [5], [7].

Pairwise Cluster Ensemble. [5] Given a cluster ensemble Π , a N×N similar-
ity matrix is constructed for each ensemble member, denoted as Sm, m = 1 . . .M .
Matrix entries represent the relationship between data points, xi and xj (Equa-
tion 1), and the matrices are effectively merged to form the co-association (CO)
matrix (Equation 2):

Sm(xi, xj) =
{

1 ifC(xi) = C(xj)
0 otherwise

(1)

CO(xi, xj) =
1
M

M∑
m=1

Sm(xi, xj) (2)

Having obtained the CO matrix, Fred and Jain [5] used the agglomerative clus-
tering to derive the final partitions. In contrast, Strehl and Ghosh [4] proposed
Cluster-based Similarity Partitioning Algorithm (CSPA) that generates a sim-
ilarity graph whose vertices represent data points and edges’ weights represent
similarity scores obtained from the CO matrix. Afterwards, a graph partition-
ing algorithm called METIS [9] is used to divide this graph into k clusters of
approximately equal size.

2.2 Link Analysis

When objects are connected according to their relations, it is possible to esti-
mate the similarity of any object pair by using the underlying link information.
Various link-based similarity measures have proven effective for the classification
of web documents [10]. Two of these approaches, namely the “Connected-Triple
algorithm” and the “SimRank algorithm”, have proven to be particularly useful
in the development of new similarity matrices that have improved cluster ac-
curacy. Their fundamental concepts and applications to similarity matrices are
thoroughly explained in Section 3.
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3 Methodology: New Similarity Matrices for Consensus
Functions

Despite the advantage of its simplicity, the CO matrix fails drastically to handle
unknown relations between data points, whose similarity is zero. Investigations
revealed zero-similarity values of 75%, +/- 5%, for the real-world datasets used
here. The CO matrix can expose only a small proportion of pairwise similarity
between data points, which may be better discovered by bringing in additional
information regarding relations between clusters in an ensemble. As a result,
two novel link-based methods are proposed to estimate similarity values: the
Connected-Triple based similarity (CTS) matrix and the SimRank based simi-
larity (SRS) matrix .

3.1 Connected-Triple Based Similarity (CTS) Matrix

The Connected-Triple approach is used in finding duplicates of author names in
the bibliographic database, DBLP [11]. It works on the basis that if two nodes
share a link to a third node then this is indicative of similarity between those two
nodes. Its application to the cluster ensemble problem is illustrated in Figure 2.
The circle vertices denote data points and the square nodes represent clusters
in each clustering. There exists an edge between a data point xi and a cluster
Cj if xi belongs to Cj . In particular, data points x1 and x2 are considered to
be similar in clustering 2 and 3, in which they are assigned to the same clusters
(clusters C and D, respectively). In contrary, their similarity is denoted as zero
using information in the clustering 1 alone. Intuitively, despite being assigned to
different clusters, their similarity may be revealed if these clusters are seemingly
similar. Using the Connected-Triple approach, cluster A and B are justified
similar due to the fact that they possess 2 Connected-Triples in which cluster C
and D are centers of the triples.

Originally, the amount of triples associated with any two objects is summed
up as a whole number. This simple counting might be sufficient for data points or
other indivisible objects. However, to evaluate the similarity between clusters, it
is crucial to take into account the characteristics like shared data members among
clusters. Inspired by this idea, the new Weighted Connected-Triple algorithm for
the problem of cluster ensembles is introduced as follows.

Fig. 2. A graphical representation of a cluster ensemble
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Weighted Connected-Triple. Given a cluster ensemble Π , a graph G =
(V, W ) can be constructed where V is the set of vertices each representing a
cluster in Π and W is a set of weighted edges between clusters. Formally, the
weight assigned to the edge connecting clusters i and j is estimated in accordance
with the proportion of their overlapping members.

wij =
|Xi ∩Xj|
|Xi ∪Xj|

(3)

where XA denotes the set of data points belonging to cluster A. Instead of
counting the number of triples as a whole number, the Weighted Connected-
Triple regards each triple as the minimum weight of the two involving edges.

Ck
ij = min(wik, wjk) (4)

where Ck
ij is the count of the triple between clusters i and j whose common

neighbor is cluster k. The count of all triples (1 . . . q) between cluster i and
cluster j can be calculated as follows:

Cij =
q∑

k=1

Ck
ij (5)

The similarity between clusters i and j can be estimated as follows, where
Cmax is the maximum Cij value of any two clusters i and j.

SWT (i, j) =
Cij

Cmax
(6)

Connected-Triple Based Similarity (CTS) Matrix. This matrix adopts
the cluster-oriented approach previously described to enhance the quality of
the pairwise similarity matrix. Specifically, for the m-th ensemble member, the
similarity of data points xi and xj is estimated using Equation 7, where DC is a
constant decay factor (i.e. confidence level of accepting two non-identical objects
as being similar) whose value range is in [0,1].

Sm(xi, xj) =
{

1 ifC(xi) = C(xj)
SWT (C(xi), C(xj))×DC otherwise

(7)

Following that, each entry in the CTS matrix can be computed as,

CTS(xi, xj) =
1
M

M∑
m=1

Sm(xi, xj) (8)

3.2 SimRank Based Similarity (SRS) Matrix

SimRank reflects the underlying assumption that neighbors are similar if their
neighbors are similar as well. Essentially, the similarity of any two objects, g1

and g2, can be calculated as follows:
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s(g1, g2) =
DC

|Pg1 ||Pg2 |

|Pg1 |∑
i=1

|Pg2 |∑
j=1

s(P i
g1

, P j
g2

) (9)

where DC is a decay factor and DC ∈ [0, 1], Pg1 and Pg2 are the sets of neighbors
of objects g1 and g2. Individual neighbors of these objects are specified as P i

g1

and P j
g2

, for 1 ≤ i ≤ |Pg1 | and 1 ≤ j ≤ |Pg2 |. Note that s(g1, g2) = 0 when
Pg1 = ∅ or Pg2 = ∅. It is suggested by Jeh and Widom [12] that the optimal
similarity measures could be obtained through iterative refinement of similarity
values to a fixed-point (i.e. after k iterations).

lim
k→∞

Rk(g1, g2) = s(g1, g2) (10)

Rk+1(g1, g2) =
DC

|Pg1 ||Pg2 |

|Pg1 |∑
i=1

|Pg2 |∑
j=1

Rk(P i
g1

, P j
g2

) (11)

At the outset, this iterative process starts off using the lower of: R0(g1, g2) = 1
if g1 = g2, and 0 otherwise.

Applying SimRank to Cluster Ensemble Problem. Besides considering a
cluster ensemble as a network of clusters only (the CTS algorithm), a bipartite
representation can be utilized to reveal more hidden relations. Figure 3(a) and
3(b) show the cluster results of two base clusterings, and the corresponding
bipartite graph is presented in Figure 3(c).

Fig. 3. Representing a cluster ensemble as a bipartite graph

Given a cluster ensemble Π , a graph G = (V, E) can be constructed, where V
is a set of vertices representing both data points and clusters in the ensemble and
E denotes a set of edges between data points and their clusters. Let SRS(a, b)
is the entry in the SRS matrix, which represents the similarity between any pair
of data points or the similarity between any two clusters in the ensemble. For
a = b, SRS(a, b) = 1. Otherwise,

SRS(a, b) =
DC

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SRS(a′, b′) (12)



228 N. Iam-on, T. Boongoen, and S. Garrett

where DC is constant decay factor within the interval [0, 1], Nx denotes the set
of vertices connecting to x. Accordingly, the similarity between data points xi

and xj is the average similarity between the clusters to which they belong, and
the similarity between clusters is the average similarity between their members.

Iterative Computation of SimRank. The similarity scores between any pair
of vertices can be computed through the iteration process. Let SRSr(a, b) be a
similarity score between a and b at iteration r, the estimation of the similar-
ity score at the next iteration r + 1 is shown below. Note that, at the outset,
SRS0(a, b) = 1 if a = b and 0 otherwise.

SRSr+1(a, b) =
DC

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SRSr(a′, b′) (13)

4 Experiments, Results and Analysis

In this section, the experimental evaluation of two new pairwise similarity matri-
ces is presented. Their performances are compared with that of the CO matrix
over both synthetic and real-world datasets, using a variety of validity indices.

4.1 Datasets

The proposed similarity matrices are experimentally evaluated over six datasets,
where true natural clusters are known but are not explicitly used by the cluster
ensemble process (see Figure 4(a)). Three real-world datasets obtained from
UCI benchmark repository1 are used: Iris, Wine and Glass. In addition, three
synthetic datasets are included in the experiments: Difficult Doughnut [13], 2-
banana and 2-spiral [14] datasets, shown in Figure 4(b) to 4(d), respectively.

Fig. 4. Synthetic datasets

4.2 Evaluation Criteria

Since the external class labels are available for all experimented datasets, the
results of final clustering are evaluated using four label-oriented validity indices:
Classification Error, Normalized Mutual Information [4], Rand index [15] and
Adjusted Rand index [15]. In particular, the Classification Error (CE) measures
1 www.ics.uci.edu/∼mlearn/MLRepository.html
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the number of misclassified data points within a clustering solution compared
with known class labels. Formally, the CE score is estimated by [6] using the
following equation; where N and K are the number of data points and clusters
in the dataset, respectively, ni is the number of data points in cluster i and mi

is the number of data points with the majority class label in cluster i.

CE =
∑K

i=1(ni −mi)
N

(14)

In addition to label-oriented criteria, the goodness of a clustering solution can
be measured using only quantities and features inherited from the dataset. Thus,
two other label-irrelevant validity criteria, namely Compactness [16] and Dunn
index [17], are also employed to measure the quality of clustering results.

4.3 Experimental Results

Unknown Relations (Zero-Similarity Values). Comparing to the CO ma-
trix, Figure 5 presents much lower percentages of unknown relations achieved
in the proposed link-based similarity matrices, the CTS and SRS matrices. This
empirical evidence signifies that link-based similarity measures can help discov-
ering implicit relationship amongst data points, which is not possible using the
original co-occurrence statistical approach.

Fig. 5. Percentages of zero-similarity values in two proposed similarity matrices, com-
paring to those of the CO matrix. This set of statistics is the average figures of 50 runs
achieved on Iris and Wine datasets, with three different ensemble sizes (10, 20 and 30).

Quality of Pairwise Similarity Matrices. The quality of CTS and SRS
matrices are empirically compared against the conventional CO matrix using
several settings of cluster ensembles exhibited below.

– The k-means clustering algorithm is specifically used to generate the base
clusterings, with random initialization of cluster centers.

– Three schemes for selecting the number of clusters (k) in each base clustering
are: fixed k =

√
N , random k in [2,

√
N ], and random k in [2, N/2], where

N is the number of data points.
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– Three different ensemble sizes of 10, 20 and 30 base clusterings, respectively.
– The constant decay factor (DC) are set to be 0.5 and 0.8 for the Connected-

Triple and SimRank algorithms, respectively.
– Consensus methods: three agglomerative approaches (single-linkage,

complete-linkage and average-linkage) and a graph partitioning method
(METIS). Note that, applying METIS to the CO matrix is the technique
named Cluster-based Similarity Partitioning Algorithm (CSPA) [4]. For com-
parison purpose, as in [6] and [8], these consensus functions divide data points
into K (the number of true classes for each dataset) partitions in accordance
with the underlying similarity matrix (CO, CTS or SRS).

– The ultimate clustering results are evaluated using six validity indices em-
phasized in Section 4.3. The quality of each similarity matrix with each
specific ensemble setting is generalized as the average of 50 runs.

Table 1 presents a specific subset of experimental results where each final clus-
tering result produced by consensus methods is evaluated using only the Classifi-
cation Error (CE) measure and the ensemble size is 30. Accordingly, the CTS and
SRS approaches achieve the minimum CE score for most experimented settings
of cluster ensembles. This effectively implies the better quality of two link-based
similarity matrices comparing to the traditional co-association method. Espe-
cially, the CO matrix causes the worst performance with the complete-linkage
algorithm across all datasets, and real-world datasets in particular.

Table 1. Classification errors (in percentage) of CTS, SRS and CO pairwise methods.
Represented figures are the averages across 50 runs of cluster ensemble (size = 30),
using four different combination techniques over six datasets. The lowest CE score of
each specific ensemble setting is highlighted in boldface.

Dataset k
Single-Linkage Complete-Linkage Average-Linkage METIS

CTS SRS CO CTS SRS CO CTS SRS CO CTS SRS CO

Difficult 10 36.18 6.96 37.10 28.78 25.20 39.96 11.98 2.34 6.40 1.00 1.00 1.32

Doughnut [2,10] 7.60 3.42 9.50 24.00 23.42 32.70 25.12 20.16 27.58 1.00 1.00 0.98

[2,50] 38.50 36.28 39.20 26.92 26.26 36.82 24.18 19.92 24.28 1.00 1.00 1.08

2-banana 15 0.00 0.00 0.00 33.82 24.91 41.94 0.00 0.00 0.00 0.00 0.00 0.00

[2,15] 0.00 0.00 0.00 12.41 11.22 29.45 2.08 2.35 4.93 5.86 7.07 13.38

[2,100] 0.00 0.00 0.00 21.56 18.56 35.02 5.02 4.72 7.02 7.56 7.50 8.32

2-spiral 14 40.99 42.51 38.38 44.07 49.31 47.54 47.59 45.87 46.84 39.27 36.51 40.64

[2,14] 46.41 38.39 46.06 38.63 39.92 42.80 37.88 37.53 38.15 35.00 35.53 35.94

[2,95] 8.89 18.98 11.34 41.63 41.16 45.42 38.71 38.23 39.68 37.05 36.08 38.18

Iris 13 20.91 16.91 23.40 16.07 14.92 47.43 16.11 12.75 13.19 3.96 3.92 4.36

[2,13] 18.69 9.57 18.20 11.53 12.29 17.11 14.15 14.27 14.55 4.41 4.52 4.56

[2,75] 31.63 32.00 31.75 12.45 13.35 31.57 13.01 13.71 13.79 4.40 4.53 5.11

Wine 14 41.87 39.94 42.47 8.53 7.66 49.89 16.53 8.94 11.00 7.70 7.94 7.84

[2,14] 46.89 32.27 48.58 7.13 7.96 20.25 4.36 5.01 4.17 7.31 7.29 7.18

[2,89] 56.49 55.63 57.07 9.94 10.20 37.91 6.94 7.66 7.57 6.81 6.71 7.04

Glass 15 48.74 40.67 48.82 46.06 45.51 50.08 48.90 47.60 48.75 40.01 40.17 38.82

[2,15] 53.81 49.45 53.88 47.65 47.83 48.04 47.69 47.32 47.00 40.42 40.03 41.19

[2,107] 52.10 49.76 53.36 47.90 47.48 55.64 46.88 45.34 47.48 40.30 37.79 40.10



Refining Pairwise Similarity Matrix for Cluster Ensemble Problem 231

Table 2. The number of times that each matrix provides the best performance, mea-
sured by six validity indices, across six datasets (Difficult Doughnut, 2-banana, 2-spiral,
Iris, Wine and Glass), four combination methods (SL, CL, AL and METIS), three dif-
ferent ensemble distributions (fixed k =

√
N , random k in [2,

√
N ] and random k in

[2, N/2]) and three ensemble sizes (10, 20 and 30).

Validity Indices
Single-Linkage Complete-Linkage Average-Linkage METIS

CTS SRS CO CTS SRS CO CTS SRS CO CTS SRS CO

Classification Error 10 45 12 18 36 0 13 35 12 27 27 9

Normalized Mutual Information 19 35 13 20 32 2 21 29 10 27 28 8

Rand Index 13 41 13 16 38 0 14 37 9 28 27 8

Adjusted Rand Index 19 35 13 21 33 0 20 31 9 28 27 8

Compactness 10 43 14 15 36 3 14 36 10 9 23 30

Dunn Index 26 20 21 14 28 12 20 16 24 20 20 22

Total 97 219 86 104 203 17 102 184 74 139 152 85

In order to compare the quality of CO, CTS and SRS similarity matrices
across all settings of cluster ensemble aforementioned emphasized, the winning
statistics is exploited. Particularly, Table 2 summarizes the number of times
that each pairwise method achieves the best performance across all experiment
settings. Based on four label-oriented validity measures, both CTS and SRS
approaches perform much better than the other counterpart. However, without
label information, the goodness of clusters generated from three matrices are
rather competitive.

Analysis of the SRS Matrix. Due to the recursive computation of the SRS
approach, it is important to investigate the implication of iterations on the clus-
tering quality. With the ensemble size of 10, Figure 6 depicts the classification
error (CE) scores (averages of 50 runs) of the CO and SRS methods over Iris
dataset (similar trends obtained with other datasets). It is obvious with all con-
sensus functions that the SRS method usually achieves lower CE scores than the
CO approach in its second iteration. Additionally, for all datasets, the conver-
gence of the SRS method is typically achieved within 3 or 4 iterations, which is
analogous to the typical convergence of the SimRank algorithm [12].

Complexity Analysis. Besides quality assessment, this section presents com-
putational requirements of link-based similarity approaches. Primarily, the time
complexity of creating the CO matrix is O(N2M), while that of the CTS matrix
is O(N2MT ), where T is the average of |NCa ||NCb

|, Ca and Cb are the clusters
to which data points a and b belong, |NCa | and |NCb

| are the number of clusters
that share members with Ca and Cb, respectively. In addition, the same require-
ment of the SRS matrix is O(nr(N2 + C2)), where n is the average of |Na||Nb|
over all pairs (a,b), r denotes the iterations of the SimRank algorithm and C is
the total number of clusters in the ensemble.

In essence, two link-based matrices are more computationally expensive than
the original CO matrix and they may be impractical for very large datasets.
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Fig. 6. Classification errors of the SRS pairwise approach at various iterations, com-
pared to the CO matrix over the Iris dataset, two ensemble distributions (fixed k =

√
N

and random k in [2,
√

N ]) and four consensus functions (SL, CL, AL and METIS).

However, as empirically demonstrated, they greatly improve robustness and qual-
ity of clustering results, by being able to recover additional hidden relations
among data points that are completely neglected in the CO approach.

5 Conclusion

This paper presents two novel link-based similarity matrices for the problem of
cluster ensembles, Connected-Triple based similarity matrix and SimRank based
similarity matrix. In these pairwise matrices, similarity among data points is
evaluated using structural-context embedded within cluster ensembles. The em-
pirical studies, with several ensemble settings and validity measures over real-
world and synthetic datasets, suggests that the proposed methods achieve su-
perior clustering results comparing to the traditional co-association approach.
This achievement is greatly due to the fact that link-based algorithms are able
to reveal more hidden relationship among data points, with which the original
method fail utterly to cope. Despite such promising practice, the prominent fu-
ture work includes the reduction of time complexity inherited from link-oriented
analysis. To this extend, subspace and sampling techniques may make link-based
methods much more effective.
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10. Calado, P., Cristo, M., Gonçalves, M.A., de Moura, E.S., Ribeiro-Neto, B.A., Zi-
viani, N.: Link-based similarity measures for the classification of web documents.
JASIST 57(2), 208–221 (2006)

11. Klink, S., Reuther, P., Weber, A., Walter, B., Ley, M.: Analysing social networks
within bibliographical data. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA
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Abstract. In this paper we investigate the performance of a refined version of 
the Kohonen self organizing feature maps algorithm in terms of classification 
correctness when we inject in a sparse input matrix different kinds of noise and 
compared these classification results with the one without noise. The analysis 
not only gives indications on the classification errors due to noisy data, but also 
let a methodology to emerge in order to identify the portion of the input matrix 
that must be controlled with great care for avoiding classification errors. The 
methodology also suggests a suitable data partitioning approach for a GRID 
implementation of the described algorithm. The methodological indications 
were successfully verified by a case study belonging to the bioinformatics field.  

Keywords: Clustering algorithm, Kohonen SOFM, noise robustness, noise sen-
sitivity, Grid, Globus toolkit. 

1   Introduction 

As is known, cluster analysis is an important field of study that according to [1] is the 
“task of organizing a set of objects into meaningful groups. The group can be disjoint, 
overlapping or organized in some hierarchical fashion”. Clustering analysis has been 
used according with [2] in numerous fields ranging from marketing, pattern recogni-
tion earthquake studies, spatial data analysis, image processing, economic science, 
document classification and so on.  

According to [3] the optimal clustering algorithms should have many properties, in 
this study we will focus our attention on the robustness and sensitivity to input noise 
of an unsupervised clustering algorithm derived from the Kohonen Self Organized 
Feature Map (SOFM) algorithm.  

The paper is organized as follows: section 2 briefly recalls the Kohonen self orga-
nizing feature maps algorithms and the modifications designed by the authors to this 
algorithms, section 3 revises the literature about input noise robustness of the cluster-
ing algorithms, section 4 describes our case study dealing with a noise robustness and 
sensitivity methodology of particular interest to improve the execution of clustering 
algorithms of sparse dataset using the GRID infrastructure. The validity of the meth-
odology is tested to classify a large bibliographical dataset in search of new gene-
disease associations. Section 5 summarizes the lessons that can be derived from the 
case study to apply our methodology for the parallel clustering of general datasets.   
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2   From SOFM to Parallel Clustering Algorithms  

The Kohonen Self Organizing Feature Maps (SOFM) [4], [5], [6] are often used to 
cluster datasets in an unsupervised manner. In its original version SOFM is composed 
by two layers: an input layer with as many nodes as the number of dimensions of the 
dataset we want to cluster, and an output layer with as many nodes as the number of 
classes we are looking for.  

In this paper we deal with the online SOFM since the batch version has some dis-
advantages [7], as, for example, the fact that it is often a rough approximation of the 
online algorithm. In particular, in the paper we will take into account our modified 
version of  SOFM, described in [8] and [9], characterized by a different topology of 
the network in which the output neurons are arranged along a mono-dimensional 
layer. In this configuration the classes are given by the output neurons. This means 
that if, at the final cycle, the neuron mostly activated by the ith object is the jth neuron, 
then the input object belongs to class j.  

Our algorithm works on both the feature space and the similarity space. If we use 
the similarity space the software tool allows us to perform a final step in which, for 
each class, we find both the most relevant features common to the majority of class 
elements, called positive features, and the features few present in the majority of class 
elements, called negative features. The authors have also suggested in [8] and [9] an 
automatic strategy to find the optimal number of classes. 

With the advent of the GRID, the interest towards the parallel version of SOFM or 
its variants is increased more and more in order to classify large datasets and discov-
ery new associations in emerging fields such as biomedicine and nutritional genomics 
characterized by very large amount of both experimental and bibliographical data.  
The interested reader may find a concise survey of parallel unsupervised clustering 
algorithms in [16] and [17], where two effective parallel algorithms are also proposed: 
one dealing with the parallelization of the K-Means algorithm and the other of our 
refined version of SOFM.  

3   Brief Review of Input Noise Sensitivity of the SOFM  

Several studies can be found in literature concerning the evaluation of neural network 
robustness to input noise. In [10] the results of the noise sensitivity for various kinds 
of classifiers are given by taking into account two types of noise. To this aim the 
initial set of the n-dimensional vectors vi representing the ith  input item has been 
modified by adding two entries vi(n+1) and vi(n+2) for each vector containing respec-
tively a noise uniformly distributed in the interval [-1, 1] and [0, 0.1], whereas a third 
entry given by [vi(n+1)+ vi(n+2)]/2 for redundant information simulation has been 
also added. 

In [11], a robustness analysis of a radial base function (RBF) and a multi-layered 
feed forward neural network used to approximate a series of simulated function has 
been done. From the original data set a noisy data set was generated by adding a small 
amount of noise sampled from a normal distribution N (µ, σ/100) where µ and σ are 
taken from the original dataset, yielding an error ratio of approximately 1%. This 
analysis was done in practice by taking into account a dataset derived from the  
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chemistry. The robustness of the two networks, configured almost identically was 
compared with a slightly better result for the RBF neural net. In [11] it is pointed out 
that the robustness analysis depends on the dataset and on the network configuration 
used and that consequently it is not possible to draw general conclusions about intrin-
sic robustness properties. Thus a robustness analysis can give an indication on the 
property of a neural classifier with respect to a specific type of dataset.  

In [12], the performances of the SOFM in features extraction by using time series 
generated from synthetic, linear progressive data are given. The sensitivity to map 
size, map lattice structure, initialization, neighbourhood function and noise has been 
evaluated. In particular the question about the ability of SOFM to extract known pat-
terns in the presence of white noise with a signal to noise ratio equal to one has been 
investigated.  

In [13], several clustering algorithms have been compared with respect to different 
parameters such as homogeneity and separation of clusters, silhouette width and ro-
bustness. For evaluating the robustness, the data were perturbed by adding a random 
vector. Each element of the random vector was generated from a Gaussian distribu-
tion (µ = 1, σ= 0.01). For each cluster the index proposed in [14], named Weighted 
Average Discrepant Pair (WADP), has been calculated. This has been obtained by 
first computing for each cluster the ratio D/M, where M is the number of pairs of 
elements in the original cluster and D is the number of pairs of elements that don’t 
remain together in the clustering of perturbed data. A weighted average of this index 
is then computed over all the clusters. This process was repeated many times to calcu-
late the overall average as the WADP. The SOFM obtained the best value for the 
index with values  ranging from 0.05 for 20 clusters  to 0.18 for 60 clusters. (a value 
of zero of the index indicate perfect matching).  

In [15], the SOFM has been compared against seven hierarchical clustering meth-
ods on 252 synthetic datasets with various level of imperfection on the input data such 
as: data dispersion, outliers, irrelevant variables and non uniform cluster densities 
pointing out the superior performance of SOFM. For example when one or two irrele-
vant variables are inserted in the dataset the performances of the SOFM decay respec-
tively to 84% and 79.2%. The values reported are the average obtained with datasets 
containing from one to five variables.   

In the following we study the problem of the noise robustness and sensitivity hav-
ing in mind a clustering problem of large bibliographical data to be solved in a GRID 
environment in which the problem of the term identification and of how to subdivide 
the dataset among the computational units may be critical for achieving acceptable 
time performances and effective clustering precision. 

4   Robustness and Sensitivity to Noise for a Sparse Input Matrix to 
be Classified by a Parallel Algorithm 

In [16] we proposed a novel method for discovering and evaluating hopefully new 
relationships between genes and genetic diseases from Pubmed abstracts using the 
GRID. This method was based on the repetitive application of a clustering algorithm. 
In [16], the clustering algorithm at the core of the method is a parallel version of the 
K-means clustering, whereas in [17] we have proposed to use a parallel version of our 
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modified version of SOFM (i.e. the one presented in [8] and [9]) to attain higher per-
formances in processing time and to achieve a better precision in clustering.  

We worked with real word data obtained from indexing 3528 Pubmed abstracts. 
The rows of the matrices Mk given as input to the mentioned clustering algorithms are 
related to the abstracts, whereas their columns give the frequency in the abstracts of 
the terms related to a certain gene or disease, e.g., MD(i, j)  gives the frequency of the 
genetic disease labeled by j in the ith  abstract.  Four matrices were used for discover-
ing the gene-disease associations, i.e., MD(i, j) which gives the frequency of the ge-
netic disease labeled by j in the ith  abstract assuming that some genes are also referred 
in the abstract; MG(i, j) which gives the frequency of the gene labeled by j in the ith  
abstract assuming that some genetic diseases are also referred in the abstract; DD(i, j) 
which gives the frequency of the genetic disease labeled by j in the ith  abstract assum-
ing that no genes are referred in the abstract; and GG(i, j) which gives the frequency of 
the gene labeled by j in the ith  abstract assuming that no genetic diseases are referred 
in the abstract. 

Let us note that all these input matrices are sparse. From fig.1a we can observe also 
that more or less all the documents contain few terms, e.g., 2,204 documents out of 
3,528 refer only one term in the abstract. The distribution of documents with respect 
to the term contained in the abstract is logarithmic. Fig.1b displays the number of 
columns for different numbers of elements greater than zero. From this figure we can 
observe that almost all the columns have a very few number of entries whose values 
differs from zero, e.g., for 230 columns the number of entries different from zero is 
less than 1% (35) of the total number of rows (3528).  Fig.1b shows that the distribu-
tion of the terms with respect to the documents is an exponential distribution fast 
decaying to zero.  
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Fig. 1. Number of rows in a) and of columns in b) with respect to the number of elements 
different from zero  

 
 
Meaningful associations and hopefully new ones have been extracted by using the 

method proposed in [16], however, two relevant problems which may affect precision 
and processing time of the resulting classification have been left open, i.e., how much 
effort should be dedicated to the term identification in order to limit the effect of the 
false positives and false negatives in the resulting classification, and how the input 
matrix should be optimally subdivided into sub-matrices to be elaborated by the 
GRID nodes so that the classification resulting in a parallel environment few differs 
from the one obtainable by a single supercomputing server. 
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For these reasons, in the following we present a study of the input noise robustness 
and sensitivity able to give useful indications on how to distribute the data among the 
computational elements of the GRID and on what columns and rows it is convenient 
to carry out an indexing with more sophisticated algorithms. Although the results of 
the study are valid for sparse matrices having the distributions shown in the previous 
figures 1a and 1b, the proposed methodology can be applied to solve the mentioned 
problems with respect to matrices having other type of distributions. 

We have injected two kinds of noise in the four above mentioned feature matrices, 
to simulate both false positives and false negatives. In the former case some cells that 
are zero are set to a random value ranging from the minimum to the maximum value 
of the modified row or columns. The latter case behaves in opposite direction, i.e., 
some cells that are greater than zero are set to zero. 

In each experiment we have fixed a threshold given as the percentage of the rows 
or columns to modify. This percentage is calculated against the elements greater  than 
(or equal to) zero. Hence we have two main types of noise, i.e., noises which lead to 
false positives and the ones which lead to false negatives, and for each type of noise 
we have two ways to generate it (by row or by column). Injecting a noise in a row 
means that the document is characterized by a fuzzy abstract, whereas injecting a 
noise in a column means that the term identification algorithm adopted for indexing 
the term related to this column is few efficient.  

We chose to modify: all rows (columns) or a selection of rows (columns) or  a 
fixed percentage of rows (columns). We have also ordered the rows (columns) in 
decreasing importance order: the most important rows (columns) are the one with 
more values grater than zero. This will allow us to investigate the noise effects in the 
most important row or columns, thus clarifying if the presence of noise in important 
rows (columns) spawns more or less classification errors.  A similar analysis was 
carried out on the less important rows. 

As said before, in our analyses we injected noise as a percentage of elements 
greater than zero. We started by injecting false positives changing all the columns 
(rows) and modifying 1, 5, 10 and 15% of the rows (columns). The rows (columns) to 
be modified have been chosen randomly among the elements in the considered col-
umn (row) equal to zero.  We repeated the process on the original dataset three times 
in order to mediate the random procedure. The results are reported in figure 2 for 
noise injected by modifying all the rows (a) and all the columns (b). For a more robust 
analysis we generated five synthetic datasets with the same distribution of figure 1. 
The averaged results are reported in figure 2, where we notice that the injection of 
noise row-wise produces a greater correct classification rate with respect to the noise 
column-wise since in the former case the number of modified elements are reduced. 
In fact, if we inject noise in all the rows by changing 15% of the elements we change 
270 elements. This represents 0.04% of the elements of the input matrix. On the con-
trary, if we inject noise in all the columns and for each column we modify 15% of the 
elements greater than zero, we modify 1,459 elements, and this is about 0.1% of the 
elements of the input matrix.  
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Fig. 2. Average correct classification rate for different percentage of injected noise on the 
original dataset: all the rows are modified; b) all the columns are modified 

 
We also investigated the classification results when the false positive error is in-

jected in the most important rows (columns). In this study we chose the first five 
hundreds rows with many ones and the first fifty columns with many ones. In this 
case for each column (rows) we chose randomly the percentage of rows (columns) to 
modify among the most important rows (columns). With a similar method we re-
peated the analysis for the less important rows (columns). Also in this case the proc-
ess is repeated five times with synthetic datasets and the averaged results are reported 
in figure 3 where the correct classification rate for injected noise row-wise (i.e., by 
modifying all the rows) (a) are column-wise (b) (i.e., by modifying all the columns) 
are drawn.  The graph compares the results when the changes are randomly distrib-
uted on all the columns (rows), or on the most important columns (rows), or in the 
less important columns (rows). 

(a) (b) 
 

Fig. 3. Correct classification rate for different percentage of injected noise when we change all 
the rows a) or all the columns (b) 

 
Let’s consider first an injection of noise row-wise (figure 3a). The results are com-

parable between them for a low percentage of noise (since we change very few  
elements) but for a greater percentage of noise (i.e., 15%) we see that, if we take as 
reference the case in which, for each row, the modified elements are randomly dis-
tributed among all the columns, whose correct classification rate (CCR) is 0.8773, we 
obtain a better results if the noise is concentrated into the less important columns 
(CCR = 0.8950) and the worse result if the noise is concentrated into the most impor-
tant columns (CCR = 0.8658). This is mainly due to the fact that the most frequent 
terms tend to characterize the document class, thus if many of such terms are, by 
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mistake, present in non pertinent documents, this may produce with greater probabil-
ity relevant modifications of the document classes. This imply that in indexing the 
document we should put more attention to the most frequent terms by applying the 
more sophisticated term identification algorithms even at the cost of a more computa-
tional power.   

If we inject noise column-wise (figure 3b) we can observe that if, for each column, 
the noise is more concentrated into the most important rows we obtain the best classi-
fication rate. The difference is visible even for smaller percentage of noise. This is 
mainly due to the fact that the most important rows few modify their classification 
even if we change some frequency in the terms referred by their abstract. This implies 
that we must put special care in the indexing method for the less important rows.  

From these results we may derive a methodology that can be applied to different 
datasets with the objective of quantifying the importance of different groups of rows 
or columns (i.e., the most important or the less important rows) with respect to the 
problem of the false positives or negatives. To this aim, we denote the set of less 
important rows (columns) as  R- (C-) and the one of the most important rows (col-
umns) as R+ (C+). The methodology consists of the following five steps:  

 

1. analyze the performance of the classification algorithm of the original dataset to 
establish the class membership of each documents. This resulting classification 
will be used as gold standard. 

2. inject noise by modifying all the rows (columns). For each row (columns) modify 
a percentage of the columns (rows). Selects the columns (rows) to modify among 
all the columns (rows) with a value equal to zero. Compare the classification re-
sults to the gold standard. This correct classification rate Rref  (Cref) will be used 
as reference, i.e., the correctness rate of the reference case.  

3. Inject the noise in the same percentage as step 2, but in this case the rows to mod-
ify are selected first among R- and then among R+. Compare the classification re-
sults to the gold standard thus obtaining the correct classification rate for either 
the less important and most important case, let say Rless and Rmost such values. 
Compare these results with the results of reference case obtained in step 2, thus 
obtaining the following matrix R consisting of one column: 

R- Rless / Rref

R+ Rmost / Rref
R =

 

4. Repeat the process in step 3 by substituting R-, R+, Rless and Rmost by C-, C+, Cless 
and Cmost, thus obtaining the following matrix C consisting of one row: 

C- C+

Cless / Cref Cmost / Cref
C =

 

5. Perform the following analysis for both the rows and the columns: 
• For the rows in R- (for the columns in C-) change the elements in C- (R-). For 

the rows in R+ (for the columns in C+) selects the elements to change ran-
domly among the zero elements in all the columns (rows). Compare the clas-
sification results to the gold standard thus obtaining the correct classification 
rate Q1R (Q1C). 
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• For the rows in R+ (for the columns in C+) change C- (R-). For the rows in R- 
(for the columns in C-) selects the columns (rows) randomly among the zero 
elements in all the columns (rows). Compare the classification results to the 
gold standard thus obtaining the correct classification rate Q2R (Q2C).  

• For the rows in R- (for the columns in C-) change C+ (R+). For the rows in R+ 
(for the columns in C+) selects the columns (rows) randomly among the zero 
elements in all the columns (rows). Compare the classification results to the 
gold standard thus obtaining the correct classification rate Q3R (Q3C). 

• For the rows in R+ (for the columns in C+) change C+ (R+). For the rows in R- 
(for the columns in C-) selects the columns (rows) randomly among the zero 
elements in all the columns (rows). Compare the classification results to the 
gold standard thus obtaining the correct classification rate Q4R (Q4C).  

• Compare the results against the reference case by using the following matrix: 

QC =QR =
 

In particular if  Rless  / Rref  < Rmost  / Rref (i.e., the less important rows are the 
most sensitive ones to the noise), then the row R-  of the matrix QR has to be 
taken into account to identify if the most sensitive columns of the most sensi-
tive rows are C- or C+ depending on if  Q1R < Q2R or not. If  Rless  / Rref  > 
Rmost  / Rref  (i.e., the most important rows are most sensitive to the noise) we 
have to consider Q3R  and Q4R in the row R+ of the matrix QR to identify if 
the most sensitive columns of the most sensitive rows are the ones belonging 
to C- or C+. Similarly we have to proceed to identify the most sensitive col-
umns of the matrix C and then the most sensitive rows of the most sensitive 
columns by comparing Q1C with Q3C or Q2C with Q4C of the matrix QC. For 
example if  Cless  / Cref < Cmost  / Cref, then columns C- are the most sensitive 
and most sensitive rows of the most sensitive columns are the rows of R- or 
R+ depending on if  Q1C < Q3C or not. 

 

To confirm such methodological indications experimentally we repeated the men-
tioned analysis for the five synthetic data sets characterized by the same distribution 
of figure 1. The results are reported in the following figures. Figures 4a and 4b refer 
to noise generated in column order (i.e., column-wise); Figures 4c and 4d refer to 
noise generated in row order (i.e., row-wise). 

Figure 4a gives a strong indication that the less (most) important rows are most (less) 
sensitive to noise as reported earlier. According to the proposed methodology the most 
critical case is obtained when we associate the columns C+ with rows of R- (see fig.4b), 
whereas the best results are obtained when we associate the columns, especially C+, with 
R+. Consequently, the resulting classification can be improved if we previously check the 
terms C+ with the best indexing algorithms especially for the documents R-.  

According to the proposed methodology figure 4c indicates that C+ (C-) are most 
(less) sensitive to noise as reported earlier. Moreover, the most critical case is ob-
tained when we associate the rows R+ with the columns C+ (see fig.4d), and the best 
results are obtained when we associate the rows, especially R-, with C-. Consequently, 
the resulting classification can be improved if we previously check the documents 
labeled by many terms with respect to the most frequent  terms C+ in the dataset. 
Figure 5 reports the above results for different percentage of injected noise. 
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Fig. 4. Correct classification rate: a) noise concentrated in R+ or R- for column-wise noise, b)  
various combinations of importance to be used depending on matrix in (a), c) noise 
concentrated in C+ and C- for row-wise noise, d) various combinations of importance to be used 
depending on matrix in (c) 

        

Fig. 5. Correct classification rate varying the noise percentage: a) column-wise noise, b) row-
wise noise 

 
The results generated by the analysis above have important implications in devel-

oping a suitable neural classification algorithm for the GRID since any parallel classi-
fication algorithm is greatly influenced on the data partitioning strategy adopted by a 
master node to divide the input matrix among the different computational elements. 
The simplest approach is to divide the rows randomly among the computational 
GRID. However, from the previous results we obtain a strong indication that R- 
should be treated with great care since an error on the indexing of these documents 
will change, with greater probability, their class membership. Moreover each node 
should have an adequate sample of R+ since they tend to greatly characterize the data-
set. From these indications we find that a suitable strategy to divide the dataset among 
the GRID nodes is the one of splitting R- and R+ equally among the computational 
GRID so that each node has a suitable sample of the dataset.  

To get an experimental evidence of this rule we performed two different classifica-
tions of the same data set on a GRID infrastructure based on Globus toolkit composed 
on three computational elements connected by a local area network: in the first case 
we distributed the rows randomly, in the second case we divided equally the less and 
most important rows among the nodes. We performed various classifications using 
different algorithms to merge the weights. The results are reported in table 1. The 
interested reader may find how the referred merging strategies work in [17]. 

From the above table we can argue that with the proposed strategy of data distribu-
tion we obtain the best result in term of correct classification rate. The improvements 
are visible in almost all the merging algorithms.  

(a) (b) 
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Table 1. Correct classification rate for various GRID implementations of the SOFM algorithm 
with a random row split or with a suitable distribution of R- and R+ among the nodes 

 Mean of the 
weights 

Mean with weight of 
different stages half 

weighted 

Mean with weight of 
different stages double 

weighted 

Weight 
rotation 

Random split 0,8293 0,8276 0,8325 0,8195 
R- distributed 0,8124 0,934 0,9558 0,8934 

 
We also investigated the correct classification rate for different number of R+. Fig-

ure 6a reports the gain in correct classification rate between the reference case and the 
important case in which we change all columns and select the elements to change 
among the first 500, 750 and 1,000 most important rows. As we can see from the 
figure the improvements due to selection of R+ decrease as we increase the set of R+.  

     

Fig. 6. Gain in correct classification rate between the reference case and the important case:   a) 
for different numbers of important rows; b) classification with different numbers of classes 

 
Another analysis was done on classifications performed on the same dataset but 

with thirty classes instead of eighty. We measured the correct classification  im-
provement between the important case and the reference case. The results are reported 
on figure 6b where the gain is reported for different percentage of injected noise. As 
we can see from the figure with less are the classes and less is the chance for an ele-
ment to change class since the boundaries between classes are sharper. If we increase 
the number of classes their boundary becomes fuzzy. Less classes we have more the 
classification is robust to noise.  

We further investigated the performance classification for a synthetic dataset where 
we doubled the initial number of ones, leaving the same distribution. With the same 
percentage of injected noise we modify a double number of elements than the previ-
ous case. The analysis confirmed the previous results with a shift downward of the 
correct classification rate. For example in the reference case by changing 15 % of 
random columns we obtain a correct classification rate equal to 0,72 (row order); by 
changing 15% of random rows we obtain a classification rate equal to 0.52.  

We also performed an analysis for noise injected as false negative. We used the 
original data set and repeated the analysis three times in order to average the random 
selection of the rows and columns. We performed the analysis only for the reference 
case. This is due to the fact that, if we try to modify all the rows (columns) and inject 
noise on the most important columns (rows), we are not sure to find the given per-
centage of elements greater than zero in this small set. We recall that the matrix is 
sparse so the elements greater than zero are a rarity. The results have a similar trend 

(a) (b) 
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as in the reference case for false positive noise, with a little shift downward (1%) both 
for noise generated in both row and column orders. The shift is more evident for a 
percentage of noise equal to 15%. This could be due to the fact that we eliminate ones 
that are a rarity in the dataset and hence we produce more modifications.  

5   Concluding Remarks 

In this paper we have proposed a methodology to evaluate the robustness and sensitiv-
ity of a refined version of the SOFM algorithm to noise in the input data. The analysis 
was carried out on a real word dataset, coming from a bioinformatics application, and 
on synthetic datasets. From the  analysis  we can draw the following conclusions:  
 

• the injection of false positive noise generated column-wise gives rise to greater 
errors. This is due to the fact that in this manner we modify a lot of documents. In 
dictionary based indexing if a term has many synonyms this could lead to false 
positive hence particular attention should be given to such terms. 

• the false positive noise generated row-wise is more conservative since less ab-
stract are modified. In automatic document indexing, making some mistake in 
processing some documents is not a big problem.  

• the false negative effects tend to have a bit greater effect than false positive noise 
especially for greater percentage of noise. This means that when indexing docu-
ments we should take care also of alias.  

• the noise concentrated into the most important rows has a less important effect 
than the one randomly distributed over all the rows. The difference is sharp. The 
situation reverses when we inject false positive noise on the most important col-
umns: in fact errors on indexing the most important columns (i.e., the most  
frequent terms) have a mild greater negative impact on the classification per-
formance.   

• terms in C+ should be treated with great care before starting the classification 
steps, in particular, we can split the indexing of the most common terms among 
the computational elements to perform the indexing of such terms with better al-
gorithms even if they require more time. 

• the best data partitioning scheme for a grid implementation of the clustering algo-
rithm is the one of  equally distributing the most and less important rows among 
the computational elements to obtain a strong gain in performance.  
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Abstract. This paper proposes a new integrated sequential data clustering 
framework based on an iterative process which alternates between the EM 
process and a modified b-coloring clustering algorithm. It exhibits two impor-
tant features: Firstly, the proposed framework allows to give an assignment of 
clusters to the sequences where the b-coloring properties are maintained as long 
as the clustering process runs. Secondly, it gives each cluster a twofold repre-
sentation by a generative model (Markov chains) as well as dominant members 
which ensure the global stability of the returned partition. The proposed frame-
work is evaluated against benchmark datasets in UCI repository and its effec-
tiveness is confirmed. 

Keywords: Clustering, sequential data, graph b-coloring, EM algorithm. 

1   Introduction  

Data clustering, also called unsupervised classification, is a method of creating groups 
of objects, or clusters, in such a way that objects in one cluster are very similar and 
objects in different clusters are quite distinct. Clustering is one of the most frequently 
performed analyses on sequential data (or time series) [1]. Sequence clustering algo-
rithms are widely used in many areas and play an important role in a broad range of 
applications. Specific applications are: clustering users based on their web navigation 
patterns [2], clustering patients based on Red Blood Cell Cytograms [3] and so on.  

There are two major categories of strategy for the clustering of sequential data: 
similarity based approaches and probabilistic model based approaches. In the first 
approach, to cluster sequential data set, the similarity measures between sequences 
become important. In the latter approach, statistical models are built to describe the 
dynamics of each group of sequences based on their observations. 

In [4], we have proposed a clustering method for sequential data. Based on the no-
tion of b-coloring of a graph [5], it trains a Mixture of Markov chains models (EM 
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process), where each sequence can be used to estimate the parameters of more than 
one cluster depending on their graph characteristics. Ultimately the process converges 
to a final clustering of the data and a generative model (the Markov chains) for each 
of the clusters, as well as dominant members which ensure the global stability of the 
partition. The framework worked well in discovering a typology of clinical pathways 
from medical data of the French health information system. However, this scheme 
suffers from two weaknesses that are: (1) It doesn’t guarantee the b-coloring property 
(proper coloring and dominance) of the returned partition and (2) the reliance of the 
b-coloring approach to the selection colors manner for some vertices: especially in the 
initialization step where a randomly strategy is used. 

This paper proposes a new integrated framework for sequential data clustering, 
which integrates both graph-based and probability-based ones, in order to comple-
ment each other. The proposed framework is based on an iterative process which 
alternates between the EM process and a modified b-coloring. The main goal here is 
to give an assignment of clusters to the sequences when the number of clusters is not 
specified in advance and so that: 

 

• The b-coloring properties are maintained in the returned partition: proper col-
oring and dominance.  

• Each cluster has a set of dominant sequences which reflects its properties and 
also guarantees that the cluster has a distinct separation from all other clusters 
of the partition. 

• Each cluster is governed by a probabilistic generative model (Markov chain) 
for sequences peculiar to that group. The behavior of these models can be used 
for classification and predicting possible paths for new arrival sequences. 

 

The proposed framework is evaluated against benchmark datasets in UCI reposi-
tory and its effectiveness is confirmed. 

2   Related Work  

As described in Section 1, there are two major categories of strategy for the clustering 
of sequential data: similarity based approaches and probabilistic model based ap-
proaches. In the first approach, to cluster sequential data set, the similarity measures 
between sequences become important. In this case, the comparison between two se-
quences is viewed as a process to transform a given sequence into another, namely, 
sequence alignment. In [6], Gunopulos and Das present a tutorial for time series simi-
larity measures. Two of the well-known similarity functions between a pair of se-
quences are: Longest Common Subsequence (LCS), and Dynamic Time Warping 
(DTW), both systematic and efficient methods be based on the sequence alignment.   

When the proximity measure between sequences is computed, a variety of similar-
ity-based techniques for grouping sequences can be found in literature [7] in order to 
discover a partition of data such that the sequences within the same cluster are similar 
to each other (intracluster cohesion) while sequences from different clusters are dis-
similar (intercluster separation).The weak point of similarity-based approaches is that 
the returned clusters are not easily interpretable since most of these methods fail to 
give a clear idea about the relationships between sequences of clusters. Consequently, 
such methods don’t facilitate the prediction and classification making process.  
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The other broad class in sequence clustering builds probabilistic models like 
Markov chains and HMM to describe the dynamics of each group of sequences. 
Among them are the Learning Mixture Markov models that constitute the most wide-
spread popular tool for clustering time series. Given the number k of clusters, Cadez 
et al. [3] propose a unifying probabilistic framework for clustering individuals into k 
clusters, when the available data measurements are not multivariate vectors of fixed 
dimensionality. They provide a general Expectation-Maximization algorithm (EM) 
[8] for clustering such data set and demonstrate its usefulness on three applications. 
The key idea in [3] is the fact that each cluster in the partition is depicted by a Markov 
chain model and the EM approach is used to generate parameter estimates (the initial 
state probability vector and the transition matrix for each Markov cluster) so that 
cluster models are constructed in a straightforward and consistent manner.  

Another probabilistic model-based approach for clustering sequences is proposed 
in [9] using a mixture of Hidden Markov Models (HMM). A real advantage of this 
method is that the behavior of each cluster of the partition is governed by a HMM. 
HMM is a powerful stochastic method for modeling sequential data, and has been 
successfully used in many tasks such as speech recognition and DNA sequence analy-
sis. To estimate the models parameters, the HMM model-based approaches adopt a k-
means formulation, which is extended with soft memberships via an Expectation 
Maximization (EM) procedure and applied to video data in [10]. While probabilistic 
clustering approaches exhibit some important features: the discovered models can be 
used to assign sequences to clusters (online property), and the given clusters are eas-
ily interpretable. Nevertheless, the training process suffers from some weaknesses: 
The number of clusters k must be set beforehand and an initial partitioning of data is 
required in advance as an initialization step which generally affects the quality of the 
returned clustering. 

In order to remedy the problems of both probabilistic model-based and similarity-
based approaches, Oates et al. [11] find that the hybridization of dynamic time warp-
ing and hidden Markov model forms better clusters than either approach alone on 
artificial data. Their idea is that DTW and HMM methods complement each other: 
DTW produces a rough initial clustering and the HMM dynamically redeploys the 
sequences that do not belong to suitable clusters. The downside is that the HMM may 
transfer some good sequences along with the bad ones. In [4], we have proposed a 
new framework for clustering time series which is based on a hybrid model that uses a 
recently proposed graph b-coloring based clustering approach [5] and Markov chain 
models. 

The graph b-coloring [12] is the assignment of colors (clusters) to the vertices of 
the graph such that: (i) no two adjacent vertices (vertices joined by an weighted edge 
representing the dissimilarity between sequences) have the same color (proper color-
ing), (ii) for each color, there exists at least one vertex (called dominating vertex) 
which is adjacent (has a sufficient dissimilarity degree) to all other colors. The b-
coloring based clustering method enables to build a fine partition of the sequential 
data set in clusters when the number of clusters is not specified in advance. It consists 
of two steps: 1) generate an initial proper coloring of vertices using a maximum 
number of colors, and 2) removing each color that has no dominating vertices yet 
using a greedy procedure. 
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3   An Integrated Clustering Framework 

In this section, we discuss our probabilistic b-coloring based clustering framework. 
Our approach formulates the sequence clustering problem as a kind of graph partition-
ing problem in a weighted linkage graph G = (V, E), where V = {v1,v2,...,vn} is the 
vertex set which correspond to the sequences set S = {S1,S2,...,Sn}, and E = V × V is 
the edge set which correspond to higher dissimilarities than given threshold θ and are 
weighted by their dissimilarities. The graph G is traditionally represented with the 
corresponding weighted dissimilarity matrix, which is the n × n symmetric matrix 
D={di,j| Si,Sj ∈ S}. 

The goal is to divide the vertex set V of the superior threshold graph G into a parti-
tion Pk={C1,C2,..,Ck} where for ∀ Ci,Cj ∈ Pk, Ci ∩ Cj=∅ for i≠j (when the number of 
clusters k is not pre-defined) and each cluster Ci is governed by a Markov chain with 
parameters φi=(πi,ai). The different steps of our framework are illustrated in the fol-
lowing figure and detailed in the sequel of this section. 

 

Fig. 1. The different steps of our integrated clustering framework 

3.1   Notations 

In the remaining of the paper, assuming that the vertices of G are colored, the follow-
ing notations will be used: 

The following routines are proposed for the rest of procedures: 

• Update(Nc(vi)) is the method which updates the neighborhood colors of the 
vertex vi when the color of at least one of its neighbors has changed. 

• Enqueue(x,X) is the method which adds the vertex (resp. color) x into the 
vertex (resp. color) set X. 

• Dequeue(x,X) is the method which removes the object x from the set X. 
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Table 1. Notations table 1 

Symbol Description 
∆ Maximum degree of a graph G. 

c(vi): Color (integer value) of the vertex vi in G. 
N(vi): Neighborhood of vertex vi in G.  
Nc(vi): Neighborhood colors of vertex vi. 

C: Set of colors used in the graph (one set of integer values) . 
Dm Set of colors which have dominating vertices. 

NDm Set of colors that have no dominating vertex. 

ac(vi) 
The appropriate color to containing vi among all the colors in G. It is the color 
which gives the highest probability of that sequence being generated by its 
associated Markov chain (eq.(1)). 

3.2   Step 1: Initialization with Probabilistic Interpretation 

Since the initialization step of our original b-coloring clustering approach in [5] pro-
vides an initial proper coloring of G using the maximum number of colors available 
(∆+1), we propose to, as a first of our framework to: 

1. Run, before the initialization coloring step, the EM algorithm, in order to es-
timate the parameters of the (∆+1) Markov chains associated to the (∆+1) re-
quired colors where: 
o the number of clusters is ∆+1,  
o The initial partition is given using a random operation. 

2. Compute the n* ∆+1 matrix P where: 
o P(i,j) is the conditional probability that the sequence Si={ei,1, ei,2,..., 

ei,Ti} is generated by the Markov chain φj.=(πj,aj) associated to the 
cluster Cj:  

( ) ( )( ) ( ) ( ) ( )∏
−

=
+====

1

1
11

iT

t
t,it,ij,ijjijii e,eaeSP ,jScSPj,iP πφφ  (1) 

where: 
• πj: the initial state probability vector (probability to emit a symbol e at t=0). 
• aj: the transition matrix m*m. 

3.3   Step 2: b-Coloring Based Clustering with Probabilistic Interpretation 

3.3.1   Step 2.1: The Proper Maximal Coloring of G 
Let us consider an additional notation T to denote the set of treated (colored) vertices 
which are sorted on descending order of their degrees and ascending order of their 
probability to being generated by the Markov chain of their clusters (eq.(1)). Initially, 
since vertices of G are not already colored, T is an empty set {∅} and will be updated 
as long as Step 2.1 runs, as shown below.  

This step provides an initial proper coloring of the superior threshold graph G us-
ing the maximum number of colors available, i.e. ∆+1 and based on the returned re-
sults from the previous step. In order to reduce the sensitivity of the initialization step 
(for original b-coloring clustering approach) to the selection colors manner for some 
vertices, we propose to incorporate the probability measure in the algorithm. Indeed, 
the following rules are taken into account: 
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• If there is a choice between some vertices with maximum degree for starting, 
the one having maximum probability to being generated by the Markov 
chain of its appropriate cluster will be selected. 

• If there is a choice between many colors for one vertex vi, the color generat-
ing the maximum probability for vi (eq.(1)) will be selected to color it.  

The procedure proper_maximal_coloring starts from one vertex of V which has the 
maximum degree ∆ (let v be such a vertex). The algorithm puts c(v)=1 and adds v to 
the set T. Then proper_maximal_coloring tries to color the remaining vertices accord-
ing to the following principle: for each vertex vi belonging to T (initially T={v}), a 
new color is assigned to each one of its neighbors vj if it is not already colored and 
which will be then added to T. In order to give a proper vertex-coloring of G with a 
maximum number of colors, the color of vj should be different from those of its 
neighbors (which gives what is called a proper vertex-coloring of G) and -if possible- 
different from the one of vi neighbors (for allowing to x to become dominating ver-
tex). If all existing colors in G do not satisfy both constraints, the selected color for vj 
must at least verify the first one (i.e. the color must be different from those of its 
neighbors). For maximizing the probability pc(h) of each cluster (color) Ch (eq.(2)), 
the color giving the maximal probability for vj (eq.(1)) will be selected if there is a 
choice between many colors for vj.  
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After the coloring of every neighbor vj of the vertex vi, the procedure checks if the 
color c(vi) is a new dominating color. After that, the vertex vi is removed from T. 

Procedure  proper_maximal_coloring() 

BEGIN 
C := {1,2,.., ∆+1}; 
for each vertex vi 

 ac(vi)=argmaxh∈C(P(i,h));//ac(vi) is the appropriate color for 
vi 
v=argmaxvi∈V/d(vi)=∆(P(i,ac(vi)); // d(vi) is the degree of vi 
c(v):=ac(v);  
Repeat 
Select vi from T; 

M := Nc(vi)∪{c(vi)}; 
for each vertex vj ∈ N(vi) such that c(vj)=∅ do 

 H := {h| h∈C and h∉M and h∉ Nc(vj)}; 
 if (H≠∅) then c(vj):= argmaxh∈H(P(j,h)); 
 else H := C\Nc(vj); c(vj):= argmaxh∈H(P(j,h)); endif. 
 Enqueue(vj,T); 
 for each vertex vh ∈ N(vj) Enqueue(c(vj),Nc(vh));  
enddo. 
if Nc(vi)=C\{c(vi)}then Enqueue(c(vi),Dm); endif. 
Dequeue(vi,T); 

Until(T=∅) 
END. 
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3.3.2   Step 2.2: Probabilistic Interpretation of Proper Coloring 
In order to re-estimate the parameters of the Marko chain associated to each cluster 
and the matrix P, the clusters returned from the proper maximal coloring step is con-
sidered as an input to a new training EM process. Indeed, we propose to: 

1. Run the EM algorithm where: 
o the number of clusters is ∆+1,  
o The initial partition is the one returned from the initial coloring step 

(initial configuration). 

2. Compute the n* ∆+1 matrix P. 

3. Compute the ∆+1 vector pc where: 
o pc(h) is the probability of the cluster h given by formula in eq.(2). 

3.3.3   Step 2.3: Towards a b-Coloring of G 
After performing the initial coloring step 2.1, some assigned colors remain without any 
dominating vertex. Our objective now is to find a b-coloring of graph G where all colors 
are dominating colors. The idea is the following: each non-dominating color can be 
changed. In fact, after choosing one non-dominating color c (If there is many non domi-
nating colors, the one having the minimum probability pc(c) is selected) and removing it 
from the graph G, for each vertex vi colored with c (i.e. c(vi)=c), a new color is assigned 
to vi which is different from those of its neighborhood. When there is a choice between 
many colors to color vi, the color giving the maximum probability (eq.(1)) for the se-
quence Si will be selected for it. Before starting again with another non dominating color 
c’, the procedure verifies if some non dominating colors became dominating (in such a 
case, these colors will not be modified in the remaining of the step). 

Procedure find_b-coloring() 

BEGIN 
Repeat 
 NDm:= C\Dm; 
c:=argminh∈NDm(pc(h)); 

 C := C\{c}; 
 NDm:= C\Dm; 
 for each vertex vi such that c(vi)=c do 
    H := C\Nc(vj); 
  c(vj):=argmaxh∈H(P(j,h)); 

 enddo. 
 for each vertex vj such that c(vj)∈NDm do 
  Update(Nc(vj)); 
  if Nc(vj)=C\{c(vj)}then Enqueue(c(vj),Dm); endif. 
 enddo. 
Until(NDm =∅) 
END. 

3.4   Step 3: Iterative Clustering 

In order to improve the quality of the returned partition, we try, using a greedy proce-
dure, to re-color some vertices providing that the b-coloring properties are  
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maintained. The main idea is to alternate between the EM and a re-coloring process 
until the coloring is stable, i.e. no change between two successive partitions.  

3.4.1   Definitions and Notations 
The following definitions are introduced: 

Definition 1. A vertex vs is called "supporting vertex" if vs is the only vertex colored 
with c(vs) in the neighborhood (N(vd)) of one dominating vertex vd. Thus, vs cannot be 
re-colored. 

Definition 2. A vertex vf is called "finished vertex" if vf is already checked for re-
coloring. 

Definition 3. A vertex vc is called "critical vertex" if vc is a dominating, finished or 
supporting vertex. Thus, vc cannot be re-colored. 

Under these definitions, we use the following additional notations for this step: 

Table 2. Notations table 2 

Symbol Description 
Vd Dominating vertices set. 
Vs Supporting vertices set. 
Vf Finished vertices set. It contains the vertices which are already checked for re-

coloring. 
Vc Critical vertices set. Vc=Vd ∪Vs∪Vf. 

3.4.2   Modified EM Process: It Is Performed, Where: 
• The number of clusters is k (the returned clusters number from the find-b-

coloring procedure). 

• The initial partition is the one returned from the previous iteration denoted by 
Pk. For the first iteration, Pk corresponds to the partition returned from the 
find-b-coloring procedure.  

Since the dominating vertices reflect the properties of their clusters and also guar-
antee that their clusters has a distinct separation from other clusters and cannot be re-
colored (they must be assigned to only their colors returned from the find-b-coloring 
step), we assume that only the colors of non dominating sequences can be changed. 
The idea is to allow these sequences to be assigned to more than one model. Formally, 
this proposition is given as follow: At each iteration of the EM process, every domi-
nating sequence Sd is assigned to the Model (Markov chain) of its cluster returned 
from the find-b-coloring process (i.e. c(Sd)). This condition is fulfilled by considering, 
in the Expectation step, that the probability that the sequence Sd belongs to the cluster 
c(Sd) is equal to 1 and 0 to all other clusters, during the execution of the EM process. 
Consequently, the sequence Sd is used to re-estimate only the parameters of the cluster 
c(Sd) (in the Maximisation step). However, the probability that a non dominating 
sequence Si belongs to one cluster c=1,2,…,k is given using the original formula in 
eq.(3) and this sequence is used in the re-estimation of the parameters of all cluster 
models. 
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where φ ={φ1, φ2,...,φk} represents the parameters of the partition P and P(c) is the 
membership probability of cluster c. 

Our idea is summarized in the following procedure. Generally, the termination 
condition of EM process is reached when there is low change of the log likelihood, 
given by the following formula. 
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The time complexity of this procedure is linear in the sum of the lengths of all se-
quences in S. At the end of modified EM procedure, the new n* k matrix P is com-
puted.  

Procedure Modified_EM() 

Require: Pk; //a partition which is a b-coloring of G=(V,E) 
BEGIN 
Initialize EM with Pk; 
Repeat 
Expectation step: 
 for each sequence Si related to a vertex vi∈V do 
    if vi∈Vd then // vi is dominating 
   P(ci=c(Si)|Si,φ):=1; 
   for each cluster c∈{1,2,..,k} such that c≠c(Si) 

  P(ci=c|Si,φ):=0;   
  else  

   for each cluster c∈{1,2,..,k} 
 

 P(ci=c|Si,φ):=P(Si|ci=c,φc)*P(c)/Sumu=1,2,…,k(P(Si|ci=u,φu)*P(u)); 
  endif. 

 enddo. 
Maximization step: The same as for original EM 
Until(EM termination condition) 
END. 

3.4.3   Greedy Re-Coloring Process: It Is Performed under the Following 
Arguments 

• The colors of all dominating vertices Vd should be kept. Regarding the defi-
nition of a dominating vertex, each vd∈Vd is connected to the vertices with 
all the other colors. Consequently, such vertex is considered as important to 
ensure a large cluster disparity and its color should not be changed. 

• The colors of all supporting vertices vs∈Vs should not be changed, because 
changing c(vs) to other color can make some vd∈Vd as non-dominating and 
thus deteriorates the quality of a partition. The idea to not to re-color these 
vertices allows to guarantee the dominance property of b-coloring of G as 
long as the re-coloring process runs. 

• Under the previous hypothesis, only the vertices in V\{Vd∪Vs} should be 
considered for re-coloring. In order to guarantee the termination of our  
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re-coloring process, each vertex considered for re-coloring is checked at once 
and moved into Vf. Thus, in each step, we consider the re-coloring of only 
non critical vertices in Vnc=V\{Vd∪Vs∪Vf }. 

• Among v∈Vnc, we select v with the minimal P(v,c(v)) and we re-color it pro-
viding that this transformation maintains the b-coloring properties. Indeed, 
when the vertex v is selected for re-coloring, we check the colors in 
Cp(v)=Pk\Nc(v) and select the one c with the maximal P(v,c). The vertex v is 
then moved to Vf and the algorithm tries to select another vertex in Vnc until 
it became empty. Since, this re-coloring is repeated for each v∈Vnc, when al-
gorithm terminates, the following index monotonically increases: 
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• When the color c(v) of v∈Vnc is re-colored to c, some vnc ∈Vnc might become 
new critical vertices, because (1) some vertices can become dominating 
(these vertices are in the neighborhood of v and needed only one neighbor in 
the new color of v to become dominating and are checked using the 
find_new_dominating() routine), or (2) some vertices can become supporting 
ones (checked using the find_new_ supporting() routine). 

Procedure re-coloring() 

Require: G=(V,E);//A graph with a set of vertices and a set of edges. 
Require: Pk; //a partition which is a b-coloring of G =(V,E) 
BEGIN 
C=Pk; 
Divide V into Vc∪Vnc 
while Vnc≠∅ do 

v:=argminv'∈Vnc(P(v',c(v'))); 
c(v):=argmaxc∈Cp(v)(P(v,c));//re-coloring of v 
Vf:=Vf∪{v}; 
find_new_dominating(); 
find_new_supporting(); 
Vc:=Vd∪Vs∪Vf. 
Vnc:=V\Vc; 

endwhile 
END. 

4   Evaluations 

Experiments have been made using two relevant benchmark sequential data sets cho-
sen from UCI machine learning repository [13]. The first data set (promoter) consists 
of strings that represent nucleotides (one of A, G, T or C). The input features are 57 
sequential DNA nucleotides and the total number of instances is 106. The second data 
set (splice) contains 3190 instances of 60 sequential DNA nucleotides (A, G, T or C). 
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Since we deal with sequences of categorical observations, we note that the normal-
ized Edit distance (as defined in [4]) is applied to define the dissimilarity level be-
tween two sequences Si and Sj:  
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On the other hand, the dissimilarity threshold θ related to the graph G is computed 
using to our b-coloring based clustering approach in [5]. 

The quality of the cluster obtained from our framework is compared to the results 
from the mixture Markov models framework introduced in [3] (with randomly initial 
partitioning and a same number of clusters k as returned from our framework). 

For an interesting assess of the results gained with both clustering frameworks, our 
evaluation will be based on two quality indices: 

Intracluster homogeneity index (IH): such index is fundamental in the cluster vali-
dation problem. Considered as a probability scheme, the intracluster homogeneity is 
used to reflect the compactness of the discovered clusters. The greater this value, the 
more cohesive are clusters of partition. For a partition Pk={C1,C2,...,Ck} of 
S={S1,S2,...,Sn}, this function is defined as the average intracluster homogeneity of 
all the k clusters of Pk (ηi = |Ci| is the cardinality of one cluster Ci) as follows: 
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• P(ci=c|Si,φ) is the probability that  the sequence Si belongs to the cluster c (eq.(3)).  

Prediction performance index (PP): The key idea is to select the sequence Si={ei,1, 
ei,2,..., ei,Ti} within a data set X sequences separately and to: 
 

• Eliminate the final state ei,Ti from the sequence Si. 
• Classify the truncated sequence (called Strucated) in one of the k current clusters 

using the online property given by the formula in eq.(6). The chosen cluster is 
denoted by ci.  

( ){ }c,SPargmaxc truncatedkci ≤≤= 1   (8) 

• Predict the next state z in the sequence by using the transition matrix of the se-
lected cluster ci. This state will be compared with the original eliminated state 
ei,Ti. The comparison value called ωi  is given as follow: 

( ){ }
otherwise

z ,eaargmaxe if

;

;
iii T,icmzT,i

i
11

0

1 −≤≤=

⎩
⎨
⎧

=ω   (9) 

The Prediction performance index PPX of a data set X is defined as: 
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We used 5-fold cross validation for the evaluation with the previous indices. Table 
3 provides the clustering results (intracluster homogeneity and prediction perform-
ance) obtained over the two samples mentioned above, using our integrated frame-
work and the mixture Markov models framework. Both indices indicate better  
partitioning for our framework with a large variety on the intracluster homogeneity. 
The clusters are compact and well-interpretable. This confirms the pertinence of our 
framework to offer a compromise between the intracluster cohesion and the interpret-
ability of the returned partition. 

Table 3. Frameworks Performances on benchmark data sets 

Data set  Framework # instances k IH PP (training) PP (test) 
Our  0.91 0.35 0.43 Promoter 

Cadez 
106 2 

0.26 0.33 0.29 
Our  0.83 0.37 0.34 

Splice 
Cadez 

3190 3 
0.006 0.36 0.29 

5   Conclusion 

In this paper, a new integrated framework for sequential data clustering was pre-
sented. It  is based on a hybrid model that uses a modified b-coloring based clustering 
approach and the iterative EM process. The underlying clustering method result is 
that each cluster is described by dominant members, as well as a finite-state Markov 
chain model linked to each cluster, where the b-coloring properties are maintained as 
long as the clustering process runs. We have implemented, performed experiments, 
and compared our framework to other mixture Markov models framework, and illus-
trated its efficiency on benchmark data sets.  

There are many interesting issues to pursue: (1) leading more experiments and com-
parison for our framework, and (2) extending our framework to deal with the clustering 
of semantic web services based on their behaviour modelling, to name a few. 
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Abstract. The Self-Organizing Map (SOM), a powerful method for
clustering and knowledge discovery, has been used effectively for remote
sensing spectral images which often have high-dimensional feature vec-
tors (spectra) and many meaningful clusters with varying statistics. How-
ever, a learned SOM needs postprocessing to identify the clusters, which
is typically done interactively from various visualizations. What aspects
of the SOM’s knowledge are presented by a visualization has great im-
portance for cluster capture. We present our recent scheme, CONNvis,
which achieves detailed delineation of cluster boundaries by rendering
data topology on the SOM lattice. We show discovery through CONNvis
clustering in a remote sensing spectral image from the Mars Exploration
Rover Spirit.

1 Introduction

Self-Organizing Maps (SOMs) are widely and successfully used neural paradigms
for clustering and data mining. They perform an iterative learning process which
has two advantageous properties: an adaptive vector quantization that results
in optimal placement of the prototypes in the data space; and ordering of those
prototypes on a rigid low-dimensional lattice according to their similarities. Due
to these properties, SOMs facilitate informative visualization of the structure
of a higher-dimensional data space in lower (usually two) dimensions, which in
turn aids interactive capture of the cluster boundaries.

Many visualization schemes have been proposed to represent distance based
(dis)similarities of prototypes or the size of the receptive fields of neural units in
various ways such as by screen intensity levels, or by the sizes or shapes of the
SOM grid cells. The most commonly used methods include the U-matrix [1] and
its variants, which represent the (Euclidean) distance of the prototypes that are
neighbors in the SOM lattice. These are useful when relatively large SOM grid
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accomodates small data sets with a low number of clusters (e.g., [2], [3]) but,
because of averaging of prototype distances over neighbours or thresholding, they
tend to miss finer structure in complicated data [4]. Alternatively, the distances
between neighboring prototypes are shown through the adaptation of the size
or the shape of the grid cells [5,6]. Another approach for visual inspection is a
modified SOM algorithm which updates the grid positions of prototypes based on
their similarities instead of having a rigid grid (Adaptive Coordinates [7], Double
SOM [8], visualization induced SOM (ViSOM) [9]). However, these either have
hard-to-set parameters or are only applicable to small data sets because they
require relatively large number of prototypes. Automated color assignments are
also used for exploration of the coarse cluster structure [10,11,12,13]. It is popular
to analyze individual component planes of the SOM to discover information
specific to the corresponding component [12,14]. We point the reader to [14] and
[15] for more review.

A recent graph-based SOM visualization, CONNvis, proposed by these au-
thors [16], represents the data topology by a weighted version of the Delaunay
graph and drapes this graph over the SOM. In this paper, we show how CONNvis
helps detailed interactive cluster capture and knowledge discovery from remote
sensing spectral imagery, through an example of a Martian scene. Section 2
briefly explains CONNvis and clustering. Section 3 discusses the application to
Martian geology. Section 4 concludes and provides future directions.

2 CONNvis: A Graph Based SOM Visualization

CONNvis is a rendering of data topology – represented by a “connectivity ma-
trix” CONN – on the SOM lattice [15]. Below we first describe CONN, then how
it is used as a SOM visualization to assist interactive clustering.

2.1 Connectivity Matrix (CONN)

The connectivity matrix [15], CONN, is a weighted Delaunay triangulation,
where the weight of an edge connecting two prototypes is the number of data
vectors for which these prototypes are the best matching unit (BMU) and the
second BMU. Formally, each element of CONN, CONN(i, j), the connectivity
strength between prototypes i and j is defined as

CONN(i, j) = |RFij |+ |RFji| (1)

where RFij is that section of the receptive field (Voronoi polyhedron) of the
prototype i where j is the second BMU, and |RFij | is the number of data vec-
tors in RFij . CONN thus shows how the data is distributed within the receptive
fields with respect to neighbor prototypes. This produces a finer density distri-
bution than other existing density representations which show the distribution
on the receptive field level. CONN also indicates the neighborhood relations of
the prototypes with respect to the data manifold because a binarized CONN
is equivalent to the induced Delaunay graph, which is the intersection of the
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(a) Lsun (b) Delaunay graph (c) CONN

(d) Wingnut (e) Delaunay graph (f) CONN

Fig. 1. Illustration of how the connectivity matrix CONN shows neighborhood relations
in the data space, with two simple 2-d data sets from [18]. A 10 × 10 SOM is used to
obtain prototypes. Top: (a) Lsun (3 clusters) and its prototypes with true labels in
data space. (b) Delaunay triangulation of the Lsun prototypes. Empty prototypes do
not have symbols. (c) CONN of Lsun prototypes. Bottom: (d) Wingnut (2 clusters
with inhomogeneous density distribution) (e) Delaunay triangulation of the Wingnut
prototypes (f) CONN of Wingnut prototypes. The clusters of Lsun and Wingnut can
be seen through the CONN.

Delaunay triangulation with the data manifold [17]. This results in making the
separations within the data set visible.

Fig. 1 shows examples of CONN for two simple 2-d data sets constructed by
[18]. The first one is called “Lsun” which has three well-separated clusters (two
rectangular and one spherical). The second one, “Wingnut”, has two rectangular
clusters with inhomogeneous density distribution within clusters and similar
intra-cluster and inter-cluster distances. For both cases, the cluster structure
can be seen through CONN regardless of the variations in cluster characteristics.
CONN can be visualized in the data space for low-d (1-d to 3-d) data sets. For
high-d data sets, it can be rendered on the 2-d SOM lattice to represent the data
topology just as informatively as in the data space, as shown in Fig. 2.

2.2 CONNvis: Rendering CONN on the SOM

CONN can be visualized on the SOM by connecting the lattice locations of the
prototypes with lines of various widths and colors. The line widths are made
proportional to the connectivity strengths, CONN(i, j), thus show the density
distribution among the connected units. The line width conveys a sense of the
global importance of each connection by allowing comparison with all others,
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(a) CONNvis (b) U-matrix (c) CONNvis (d) U-matrix

Fig. 2. CONNvis and U-matrix visualization of the 10x10 SOM prototypes of the two
datasets in Fig. 1. (a) CONNvis of the Lsun. 3 clusters are visually separated through
CONNvis. (b) U-matrix of Lsun. A darker grey indicates more dissimilarity. It is hard
to see the 3 clusters from this visualization. (c) CONNvis of the Wingnut. 2 clusters are
made visible by strong connectivity within themselves but only one weak connection
across them. (d) U-matrix of Wingnut. Due to equal distances between prototypes
within and across clusters, it is hard to see the separation between two clusters.

in this visualization. Line colors are used to express a ranking of the Voronoi
neighbors of a prototype i in terms of the strengths of their connectivity to i :
the most-to-least connected neighbors are shown with red, blue, green, yellow,
and dark to light grey colors, in this order. Since this ranking does not depend
on the size of the receptive field of i, but only on the relative contribution of
each neighbor, the line color indicates the local importance of a connection. It
also defines a similarity measure among the neighbors.

Fig. 2 shows examples of CONN rendered on the 10 × 10 SOM of the two
small data sets in Fig. 1. The separations (clusters) in the data can be clearly
seen through the CONNvis in Figures 2.a and 2.c. For the same data sets, the
U-matrix does not resolve sufficient detail for visual extraction of the clusters
in Lsun and Wingnut (Figures 2.b and 2.d.). A larger SOM (100 × 100) can
discover these clusters through a U-matrix as shown in [3], at significantly larger
computational cost. Explanatory examples of CONNvis for a more complicated
2-d data set are given in [15].

In CONNvis, using a different line width for each connectivity strength be-
comes infeasible, due to limitations by screen resolution and the discrimination
capability of the human eye, when the number of data samples is much larger
than the number of prototypes and consequently connectivity strengths span a
large range of values.. To help this, a 4-level binning scheme is applied for line
widths as follows:

width(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1 µ3 > CONN(i, j) ≥ {µ4, 0}
2 µ2 > CONN(i, j) ≥ µ3

3 µ1 > CONN(i, j) ≥ µ2

4 CONN(i, j) ≥ µ1

(2)

where width(i, j) is the width of the line between prototypes i and j, µn is the
mean strength of the nth ranking connections. This choice provides an auto-
mated selection of thresholds based on internal data characteristics and also em-
ploys the limited number of bins effectively, because each bin reflects the global
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(a) 20-class, 6-d data (b) Known labels on the SOM

(c) The connectivity statistics (d) CONNvis

Fig. 3. (a) Left: the spatial distribution (class map) of the 20 different types of 6-d
feature vectors in the 128×128 pixel image. The known types are labeled by both colors
and letters. Right: the mean signatures of the 20 classes, offset for clarity. (b) Known
class labels overlain on the SOM (c) Mean connectivity strengths for each rank of the
connections. (d) CONNVis on the SOM. Coarse clusters (strongly connected groups of
prototypes) can be detected in spite of the presence of many topology violations, i.e.,
connections between prototypes that are not neighbors in the SOM lattice.

importance of one rank. The resolution of this binning not only distinguishes
strong connections but also reveals weak connections across densely connected
SOM regions, thus those regions can be recognized as clusters as shown in
Figure 3.

In Fig. 3, we analyze a 128 x 128 pixel synthetic image, where each pixel is
a 6-d feature vector (the analog of a spectrum). This image has 20 classes, 4 of
which are relatively small and one class has only one pixel. The signatures of
these 20 classes are also similar to each other, to make clustering challenging
(Fig. 3.a). A 20 × 20 SOM is used to obtain the quantization prototypes of
this data set. The statistics of the ranked connectivity strengths in Fig. 3.c
indicate that the maximum number of connections for a prototype is 16. The
average connectivity strength is as high as 37 (= µ1) for the first ranking (red)
connections and it drops sharply after the fourth ranking (yellow) connections
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(µ4 = 6). The CONNvis of this data, shown in Fig. 3.d, is obtained by using the
4-level binning scheme in eq. 2.2 with {µ1, µ2, µ3, 0}, given in Fig. 3.c, as the
thresholds. It makes strongly connected groups of prototypes (coarse clusters)
emerge.

Due to the representation of data topology on the SOM lattice, CONNvis
also helps in a detailed assessment of topology preservation. For example, there
are many grey connections in Fig. 3 which are between pairs of prototypes that
are not immediate neighbors in the SOM lattice (forward topology violations).
There are also prototypes neighbored in the SOM lattice but unconnected (which
means they are not Voronoi neighbors in the data space), indicating backward
topology violations. The more data vectors contribute to a given connection
that expresses topology violation (thus termed violating connection), the more
severe the violation. For a topology violating connection, low strength (thin
line) usually indicates outliers or noise while a greater strength is due to data
complexity or badly formed SOM. The folding length of the violating connection,
that is the maximum norm distance between the connected neural units in the
SOM lattice, describes whether the topology violation is local (short ranged) or
global (long ranged). In [15] we define a connection as “global” if the placement
of the corresponding Voronoi-neighbor prototype occurs outside of the “tightest
possible” SOM neighborhood.

Similarly to the CONNvis in Fig. 3.d, perfect topology preservation is not
necessary for cluster extraction in most cases. Weak global violations, or viola-
tions that remain within clusters may not affect the delineation of boundaries.
However, accurate assessment of such conditions for a trained SOM is important.
The connectivity matrix and its visualization, introduced above, is a useful tool
for such analysis.

2.3 Interactive Clustering from CONN Visualization

Interactive clustering is done from CONNvis by pruning. First, topology viola-
tions are investigated and weak global ones are removed. Strong global violations
require further analysis to see whether they are caused by data complexity or by
bad SOM learning. For example, the CONNvis of Lsun and Wingnut, shown in
Fig. 2, have no topology violations (as expected). The CONNvis of the 20-class
data set (Fig. 3) has only weak violations. The global violations (as defined in
[15]) will be those connections with length > 2 since a prototype has at most 16
neighbors in the data space (from Fig. 3.c), and these can fit in the tightest pos-
sible SOM neighborhood: 8 of them in the immediate square SOM neighborhood
(at length=1) and the remaining 8 in the next tier of SOM neighborhood (at
length=2). After removal of those global violations, strongly connected groups
of prototypes (coarse clusters), can be seen, usually with some number of weak
connections across them. The prototypes with these weak connections to the
coarse clusters, i.e. prototypes at the cluster boundaries (such as shown by black
dots in Fig. 4.a), are visually identified by the human analyst.

Crisp delineation of the coarse clusters is determined by evaluating the con-
nections of those prototypes at the cluster boundaries. For any prototype at the
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cluster boundary, one of the three situations can occur: 1) it may have different
number of connections to each cluster; 2) it may have one connection to each
cluster with different strengths (widths); 3) it may have one connection to each
cluster with different ranking (color). For each situation, a corresponding crite-
rion is applied to remove connections as follows and as illustrated in Fig. 4.a-b.

1. If the number of connections to the two cluster differs, remove the connec-
tions to the cluster with fewer connections

2. If the prototype has the same number of connections to each, remove the
weaker set of connections.

3. If the prototype has the same number and strength of connections to each
cluster, remove the lower ranking connection.

(a) (b)

(c) (d)

Fig. 4. Illustration of interactive clustering from CONNvis. Some groups of prototypes
are outlined with the lack of connections. The prototypes at the cluster boundaries
are shown by black dots. (a) The three situations at coarse cluster boundaries, for
which one has to decide how to cut connections. 1: prototypes with different number of
connections to each coarse cluster; 2: a prototype with the same number of connection
to each cluster but with differentconnectivity strengths; 3: a prototype that has a
connection to eachcluster with the same strength but different ranking. (b) Extracted
clusters (separated groups of prototypes) (c) CONNvis of the 20-class data with global
violations (length > 2) removed (d) Resulting clusters after interactive clustering. All
classes, including one-pixel class R, are captured.
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Figures 4.c-d illustrate the interactive clustering of the 20-class data with the
above three criteria. Removal of connections across the coarse clusters results in
extraction of the 20 known classes in the data, including the one pixel class R.

3 Interactive Clustering of Surface Materials in a Mars
Exploration Rover Spectral Image

From sol 159 of its mission to the present day, the Spirit rover has been exploring
a region dubbed the Columbia Hills (in honor of the space shuttle Columbia
astronauts). Rocks found in the Columbia Hills generally have clastic textures
and several chemical classes have been identified [19]. These rock types have also
been analyzed in terms of their visible and near infrared (VNIR) multispectral
properties [20,21] and thermal infrared emittance [22]. The scene analyzed here
was collected on sol 608 of Spirit’s mission near the summit of Husband Hill
(named after shuttle commander Rick Husband), by the multispectral Pancam
instrument. It is a 700× 450 pixel 7-band image from the Pancams right “eye”
(one band centered at 432 nm and six more bands with central wavelengths from
754 to 1009 nm). The image includes the rock outcrop named “Tenzing” and
the rock target “Whittaker” as well as other unnamed rocks.

We use a 40× 40 SOM and cluster the SOM prototypes interactively through
CONNvis (Fig. 5) by visual determination of the coarse clusters and removal
of the weak connections at the boundaries of these coarse clusters, as described
in Section 2.2. The cluster map of the scene is shown in Fig. 6. 17 geologically
meaningful clusters are extracted. Shadows and shaded regions, which do not
provide geologically meaningful spectral characterization, are also shown by dif-
ferent grey color codes. Some clusters match well known surface units (spectral
classes) identified in previous analyses [21] whereas some could be subtypes of
the more representative spectral classes. Mean spectra of these 17 clusters are
shown in Fig. 7 where similar spectra are placed next to each other for easy
comparison of subcluster characteristics.

The far field of the scene (upper part of the image, most extensively cov-
ered by the orange class, H) is a mixture, most closely resembling the spectral
signature of soil with heavy influence from rock fragments and an airfall dust
component. There are also soils with presumed basaltic compositions. Some of
these presumed basaltic soils (J, e) are darker-toned and coarse-grained whereas
some (I, L, S) are lighter-toned and finer-grained due to much more oxidization.
Among the lighter-toned soils, some (bright drift, N) are higher in albedo and
are likely mobile drifts whereas some (intermediate albedo soils, L) are likely
immobile. The dune near the summit of Husband Hill, which is mostly covered
with bright drift (N) and intermediate albedo soil (L), is separated from the far
field with a border (C, Q) that is possibly a mixture of sand grains.

The big rock (mostly covered by the orange class due to airfall dust) near the
horizon is the Tenzing outcrop. Tenzing is a subtype of the Jibsheet
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Fig. 5. Left: CONNvis of the 40×40 SOM of the Husband Hill image. The boundaries
of some clusters are outlined to illustrate the results of interactive cluster extraction
from CONNvis. An enlarged view of the upper left area in the yellow rectangle is shown
in the inset for a clearer view. Right: Extracted clusters, color coded according to the
color wedge in Fig. 6, overlain on the CONNvis. The clusters overlain on the Husband
Hill image is shown in Fig. 6.

spectral class, characterized by a shallow infrared absorption feature (centered
between 900 and 934 nm) [21]. The white rocks (B) in the scene are Jibsheet
type rocks whereas yellowish (D, E) rocks are rocks with a variant of the typical
Jibsheet spectral signature. The slight but consistent spectral differences (Fig. 7)
of two subclusters (D and E) of Tenzing may reflect different textural properties
(rougher/smoother textures) of some rocks near the summit of Husband Hill
(an observation by the MER team, for example, [23]). Fig. 7.b shows the slight
differences among the spectra of subclusters B, D and E and their comparison
to the Jibsheet superclass in [21]. There are also rocks in the scene which have
spectra close to that of the nearby rock target Bowline. The clusters V (purple)
and P (olive green) correspond to the Bowline-type rocks in the scene where P
has a shallower near-infrared band compared to V and appears only in one rock.
Dark purple (c) areas are partly shaded Bowline rocks whereas light pink (h)
areas are a mixture of small Bowline rocks and soil.

These 17 clusters are spatially coherent and the spectral signatures of many of
them have been associated with geologic meaning (either in earlier analyses, or in
this analysis as geologically interpretable variations within formerly recognized
classes). One cluster, g (color coded red, and shown in the white oval at the top
left in Fig. 6), is a new discovery in this image. Its signature is sufficiently distinct
to warrant a separate cluster, however, by analyzing the spectral relations with
other classes one can arrive at a hypothesis as to the physical nature of this unit.
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Fig. 6. Cluster map of the scene near the summit of Husband Hill (MER Pancam
image taken on Sol 608) with clusters extracted from CONN visualization in Fig 5.
17 geologically meaningful clusters are color coded according to color wedge. These
correspond to or refine previously identified spectral classes as explained in the text.
Shaded regions are shown in various grey color codes (not included in the color wedge).

The spectrum of g is most similar to those of sand grains (C, Q) but inherently
brighter, which might be an indication of finer grains and more light scattering
such as caused by fine sand stirred up in the air. The image was collected at a
time of extensive dust devil activity over the far plains so one might surmise that
(in spite of the poor spatial resolution that does not allow visual verification)
that the unit g might be a dust devil.

In summary, through interactive CONNvis clustering, we find the geological
units identified in previous analyses and segment some units into subtypes which
may be geologically meaningful. Our analysis provides a comprehensive mapping
of the scene with clusters that reliably match the prototypical surface materials
described by geologists. Relatively large areas, identified through our clustering
as belonging to the same spectral type, have average signatures very close to
the spectra of smaller type locations that were hand selected and extensively
studied by geologists. By reliably showing the spatial occurrences of those ma-
terials verified from the type locations, our clusters yield trustworthy statistics
for the whole scene. The reliable mapping also means potential for autonomous
data analysis. This gives us confidence that CONNvis clustering can be a viable
candidate for detailed information extraction and scientific discoveries.
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Fig. 7. Left and Center: Mean spectra of the 17 clusters in Fig. 6. The spectra of the
subclusters grouped by their major types: Bowline (V, P, h), Jibsheet and Tenzing (B,
D, E), soil and soil mixtures (I, H, L, N, e, J, S) and hypothetical dust devil (g). The
subclusters have slight but consistent differences whereas different major types have
greater spectral dissimilarities. Right: Comparison of subclusters to the corresponding
superclasses in [21]. Top: Bowline subclusters. Bottom: Jibsheet and Tenzing.

4 Conclusions and Future Work

We show that CONNvis [16], a graph based visualization of data topology on
the SOM lattice, successfully aids capture of accurate and fine details in remote
sensing spectral imagery. This graph based visualization can also be useful for
knowledge discovery from many other types of data including but not limited to
genetic microarray data, genome profiles or other biological data, medical data,
and financial data. Given that the parameters of CONNvis are derived auto-
matically from the data characteristics, one might be able to apply CONN for
automated cluster extraction from the SOM, with the same detail as with inter-
active clustering methods. This would be a significant achievement for structure
discovery since current automated SOM clustering schemes produce results in-
ferior to results from interactive procedures. This may open further possibilities
for autonomous on-board science applications.
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Abstract. Frequent subtree mining is an important problem in the area of asso-
ciation rule mining from semi-structured or tree structured documents, often 
found in many commercial, web and scientific domains. This paper presents the 
u3Razor algorithm, for mining unordered embedded subtrees where the dis-
tance of nodes relative to the root of the subtree needs to be considered. Mining 
distance-constrained unordered embedded subtrees will have important applica-
tions in web information systems, conceptual model analysis and more sophisti-
cated knowledge matching. An encoding strategy is presented to efficiently 
enumerate candidate unordered embedded subtrees taking the distance of nodes 
relative to the root of the subtree into account. Both synthetic and real-world 
datasets were used for experimental evaluation and discussion.  

1   Introduction 

To express more complex and meaningful relationships between the data objects, 
many organizations represent their domain knowledge using semi-structured docu-
ments. Semi-structured documents such as XML possess a hierarchical document 
structure, where an element may contain further embedded elements, and each ele-
ment can be attached with a number of attributes. It is therefore frequently modeled 
using a rooted ordered labeled tree. To support effective and efficient data analysis 
from tree structured documents algorithms have been developed to extract all subtree 
patterns that occur in the database of ordered labeled trees as many times as the user 
supplied support threshold. This is known as the frequent subtree mining (FSM) prob-
lem and is the first and most important and complex problem to consider when dis-
covering useful associations among data objects from a tree structured document 
[1,2,3]. In many biological data analysis tasks, the aim is to find frequent structured 
patterns, such as frequent protein or chemical compound structures from the data. For 
example, the work presented in [4] demonstrates the potential of the tree mining algo-
rithms for discovering substructures from Protein data that could be useful for discov-
ering interesting similarities and differences in protein datasets taken across protein 
families and species. Tree mining has also been successfully applied in [5] for the 
analysis of phylogenetic databases. Driven by different application needs many algo-
rithms have been developed that can mine different subtree types. HybridTreeMiner 
[6], uFreqt [7], and uNot[8], mine induced unordered trees. Treeminer [9] is an effi-
cient algorithm for discovering all frequent embedded subtrees in a forest using a data 
structure called the vertical scope-list. The SLEUTH [10] algorithm extracts all  
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frequent unordered embedded subtrees by using unordered scope-list joins via the 
descendant and cousin tests. Our contribution to the area of frequent subtree mining is 
the introduction of a tree model guided (TMG) candidate subtree enumeration frame-
work which was used for developing efficient algorithms for mining of ordered in-
duced/embedded [2], ordered distance-constrained embedded subtrees [11] unordered 
induced [12] and unordered embedded [13] subtrees. TMG ensures that only those 
subtrees are enumerated which conform to the underlying tree structure of the docu-
ment [3]. For a more extensive overview of the state-of-the-art of tree mining please 
refer to [14].  

In an ordered subtree the left-to right order among the sibling nodes needs to be 
preserved while in an unordered subtree the order of the sibling nodes (and the sub-
trees rooted at those nodes) can be exchanged and the resulting subtree is still consid-
ered the same. This causes the enumeration and counting of unordered subtrees more 
difficult, since each enumerated subtree needs to be ordered into one logical and con-
sistent form, so that all its variants that have different order among sibling nodes are 
considered as the same subtree. An induced subtree preserves the parent-child rela-
tionships from the original tree while in an embedded subtree the parent-child rela-
tionship are allowed to be ancestor-descendant relationships in the original tree. By 
mining embedded subtrees one can detect commonly occurring relationships between 
data objects in spite of the difference in the level where the relationship in the docu-
ment occurred. Certain concepts may be represented in a more specific/general way in 
certain documents. This specific information is often in the form of additional child 
nodes of the concept, and hence, two general and related concepts may be separated 
by a number of levels in the document tree. If the user is only interested in the rela-
tionship between these two general concepts, such a relationship could be directly 
found in an embedded subtree set, while if induced subtrees were extracted, the in-
formation irrelevant to the user may be present in the patterns of interest.  

While mining of embedded subtrees is a generalization over induced subtrees, one 
limitation is that the context information may be lost in some patterns. For example, 
when analyzing a biomedical database containing patient records of potential illness 
causing factors, one would be interested in common set of data object properties that 
have frequently been associated with a particular disease. By allowing ancestor-
descendant relationships it may be possible to loose some information about the con-
text in which particular disease characteristic occurred. This is mainly due to the fact 
that some attributes of the dataset may have a similar set of values and hence indicat-
ing which value belonged to which particular attribute is necessary. There appears to 
be a trade-off here and in this case allowing ancestor-descendant relationships can 
result in unnecessary and misleading information, but in other cases, it proves useful 
as it detects common patterns in spite of the difference in granularity of the informa-
tion presented. A difficulty with embedded subtrees appears then to be that there is 
too much freedom allowed with respect to the difference in the distances between the 
nodes. All occurrence of one particular relationship are considered the same and valid 
even if the distance between the related data objects is so different that it is possible 
that it occurred in a different context and has a different intended meaning. One way 
to avoid this characteristic is to further distinguish the embedded subtrees based upon 
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the distance between the nodes. Making this distinction will have important applica-
tions in web information systems, conceptual model analysis, knowledge matching 
and for general knowledge management tasks by allowing for more specialized  
queries. 

In this study we extend our past work by developing the first algorithm that will 
extract all unordered embedded subtrees with node distance information. It adds more 
granularity to the problem as the occurrences of the embedded subtrees with different 
distances among the nodes are now considered as different candidates (hence the 
name distance-constrained). Overall, mining of unordered distance-constrained sub-
trees is more expensive in terms of space and time required than when mining any of 
other subtree types. In Section 2 we define some tree mining related concepts and 
provide a motivating example for mining of unordered distance-constrained embed-
ded subtrees. The proposed u3Razor algorithm is described in Section 3 together with 
a suitable encoding strategy for enumerating unordered embedded subtrees that take 
the node distance information from the database tree into account. Section 4 presents 
some experiments to test the scalability of the approach and compare with the results 
obtained by not imposing the distance constraint. Section 5 concludes the paper. 

2   Problem Definition and Motivation  

A tree T is an acyclic connected graph with the node at the top defined as the root[T]. 
The Parent of node v (parent[v]) is defined as its predecessor. Two nodes that share 
the same parent are referred to as sibling nodes. The fan-out or degree of a node cor-
responds to the number of children of that node. A leaf node is a node without a child; 
otherwise, it is an internal node. A path from vertex vi to vj, is defined as the finite 
sequence of edges that connects vi to vj. The length of a path p is the number of edges 
in p. The distance between two nodes vi and vj can then be defined as the length of the 
path connecting vi and vj. If p is an ancestor of q and q is a descendant of p, then there 
exists a path from p to q. The rightmost path (RMP) of T is defined as the (shortest) 
path connecting the rightmost leaf with the root node. The Depth/level of a node is the 
length of the path from root to that node. The size of a tree equals to the total number 
of nodes in the tree. In this paper, the term ‘k-subtree’ refers to a subtree that consists 
of k number of nodes. A tree can be denoted as T(V,L,E), where (1) V is the set of 
vertices or nodes; (2) L is the set of labels of vertices, for any vertex v∈V, L(v) is the 
label of v; and (4) E = {(x,y)| x,y∈ V}is  the set of edges in the tree. The problem of 
frequent subtree mining can be generally stated as: Given a tree database Tdb and 
minimum support (σ) extract all candidate subtrees that occur at least σ times in Tdb.  

Within the tree mining framework, two support definitions often used are transac-
tion-based and occurrence match support. When using the transaction-based support 
definition, the transactional support of a subtree t, denoted as σtr(t) in a tree database 
Tdb is equal to the number of transactions in Tdb that contain at least one occurrence of 
subtree t. Let the notation  tp k, denote the support of  subtree t by transaction k, then 
tp k = 1 whenever k contains at least one occurrence of t, and 0 otherwise. Given N 
transactions k1 to kN of tree in Tdb, the σtr(t) in Tdb is defined as ∑

=

N

i
ikt

1

p
. 
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The occurrence-match support takes the repetition of items in a transaction into 
account and counts the subtree occurrences in the database as a whole. Hence, the 
occurrence-match support of a subtree t, denoted as σoc(t), in a tree database Tdb is 
equal to the total number of occurrences of t in all transactions in Tdb. Let function 
g(t,k) denote the total number of occurrences of subtree t in transaction k. If there are 

N transactions k1 to kN of tree in Tdb, σoc(t) in Tdb can be defined as ∑
=

N

i
iktg

1

),( .  

Next, we provide some formal definitions of commonly mined subtree types. 
Given a tree S  = (VS,LS,ES) and tree T = (VT,LT,ET), S is an induced subtree of T,  

iff (1) VS ⊆ VT ;(2) LS ⊆ LT, and LS(v)=LT(v); and (3) ES ⊆ ET.  
Given a tree S  = (VS,LS,ES) and tree T = (VT,LT,ET), S is an embedded subtree of T, 

iff (1) VS ⊆ VT ;(2) LS ⊆ LT, and LS(v)=LT(v); (3) if (v1,v2) ∈ ES then parent(v2) = v1 in S 
and v1 is ancestor of v2 in T. Hence, the main difference between an induced and an 
embedded subtree is that, while an induced subtree keeps the parent-child relation-
ships from the original tree, an embedded subtree allows a parent in the subtree to be 
an ancestor in the original tree. All the definitions provided above do not take into 
account the order among the sibling nodes. This is what makes them unordered sub-
trees. In an ordered subtree the left to right ordering of sibling nodes in the original 
tree is preserved. As mentioned in the introduction, when a distance constraint is 
imposed on an embedded subtree, the distance information between the nodes in the 
original subtree needs to be stored and used as an additional candidate grouping  
criterion.   

Given a tree S  = (VS,LS,ES) and tree T = (VT,LT,ET), S is an unordered distance-
constrained embedded subtree of T iff (1) VS ⊆ VT ;(2) LS ⊆ LT, and LS(v)=LT(v); (3) if 
(v1,v2) ∈ ES then parent(v2) = v1 in S and v1 is ancestor of v2 in T; and (4) ∀ v∈VS 
there is an integer stored indicating the distance between v and the root node of S in 
the original tree T.  

For an ordered distance-constrained embedded subtree, in addition to the above 
pre-conditions the left-to-right ordering among the sibling nodes in the original tree 
would also need to be preserved [11]. To illustrate the difference in mining of differ-
ent subtree types please consider the example tree in Fig. 1 where the label of each 
node is shown with its pre-order position on the left. In this paper, the term ‘occur-
rence coordinate(s) (oc)’ will be used to refer to the position(s) of a particular node or 
a subtree in the tree database. In the case of a node, oc corresponds to the pre-order 
position of that node in the tree database, whereas for a subtree, oc is a sequence of 
ocs from nodes that belong to that particular subtree. If ordered or unordered induced 
subtrees are mined st occurs only once in T with oc:01569, while for ordered embed-
ded subtrees it also occurs at oc:01589 since the ancestor-descendant relationships 
between nodes c (oc:5) and d (oc:8) are allowed. With unordered embedded subtrees 
the order can also be exchanged and hence st also occurs at oc:01587. If unordered 
distance constrained subtrees are mined each of the three occurrences of st will be 
considered as a separate subtree depending on the distance of the nodes to the root of 
the subtree as detected in T (i.e. st1, st2 and st3 in Fig.1.).  The numbers next to the link 
indicates the distance between the nodes connected by that link in T. Hence, st1 is a 
representative of the subtree with oc:01569, st2 of oc:01589 and st3 of oc:01587.  
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Fig. 1. Example tree T and subtree st with distance-constrained variants 

For unordered subtrees the enumeration and counting phase is more difficult than for 
the ordered case, since each enumerated subtree needs to be ordered into one logical and 
consistent form, so that all its variants that have different order among sibling nodes are 
considered as the same subtree. The group of possible trees obtained by permuting the 
sibling nodes in all possible ways is referred to as the automorphism group of a tree [10].  
During the pre-order traversal of a database, ordered subtrees are generated by default. It 
is necessary to identify which of these ordered subtrees form an automorphism group of 
an unordered subtree. One tree needs to be selected to uniquely represent the unordered 
tree. This selected tree is known as the canonical form (CF) of an unordered tree. A ca-
nonical form (CF) of an entity is in general a representative form (or a function) for 
which many equivalent variations of an entity can be represented (mapped) into one 
standard, conventional, logical form in a consistent manner [15]. The CF used by the 
proposed algorithm will be explained in Section 3.  

To conclude this section, we provide an example that illustrates a case where add-
ing the distance constraint is important for effective data analysis with respect to the 
application needs. In Fig. 2, two example trees are displayed that indicate a part of the 
ancestor family tree from two ill patients (the examples come from an image of a 
disease family tree obtained from [16]. Such information is used for linkage analysis 
of an illness by performing gene testing which can provide information about one 
having a disease-related gene mutation. When looking for a disease gene, scientists 
often start by studying DNA samples from family members over several generations 
who have a number of relatives who have developed an illness [16].   

 

Fig. 2. Example ancestor representation of two ill patients (A and B)  

For example, a scientist may want to discover how many ill relatives an ill patient 
has had and to discover the number of generations that separates them. Using the 
traditional embedded subtree definition, we can extract information only about the 
number of ill relatives, but cannot have the information about the number of genera-
tions that separate the patient and the relatives that have a common disease. This is 
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because the traditional embedded subtree definition does not have this kind of expres-
sive capability. In contrast, by utilizing the distance-constrained embedded subtrees, 
we can find out exactly how many generations they are separated by, by inspecting 
the distance information stored between the nodes. From Fig. 2, patient A has only 
one diseased ancestor and it is her great-grandfather, while patient B has two diseased 
ancestors, a grandmother and great-grandfather. Even though we do not have such an 
example in the figure, it is worth noting that it could well be the case that an ill patient 
will have two ancestors of the same gender that have the illness. In this case, the tradi-
tional embedded subtree definition would group these subtree occurrences as one 
candidate and indicate wrongly that there is only one ancestor with a disease. On the 
other hand, by mining distance-constrained embedded subtrees, both occurrences will 
be considered as separate entities due to the difference in the distance to the root node 
which is used as an additional candidate grouping criterion. Generally speaking, an 
algorithm for mining of unordered distance-constrained embedded subtrees will have 
some important applications in analysis of biological sequences, web information 
systems and conceptual model analysis.  

3   u3Razor Algorithm 

The steps taken by the u3Razor algorithm are presented in Fig. 3. The tree database is 
first transformed into a database of rooted integer-labelled trees as hashing integer-
labelled trees is much faster than hashing of string-labelled trees. It is then ordered 
into its canonical form (CF) to reduce the average number of candidate trees that need 
to be ordered. Recursive List (RL) is constructed which is a global sequence of en-
countered nodes in the pre-order traversal together with the necessary node informa-
tion. During this process the node labels are hashed to obtain the set of frequent  
1-subtrees (F1). TMG candidate generation using the RL structure takes place and the 
string representatives of candidate subtrees with the distance information between the 
nodes are hashed to the Ck hash table and their occurrences are stored. Prior to hash-
ing the string representation of each candidate subtree, it is first ordered into its CF, if 
necessary. The process repeats until all frequent k-subtrees are enumerated. To enable 
the mining of unordered distance constrained embedded subtrees the major change to 
our general TMG framework [2, 3, 12, 13] took place in the way that candidate sub-
trees are represented at the implementation level to take into account the distance 
information and the CF used, which is explained next. We then explain the RL struc-
ture and the TMG process for enumerating a complete set of unordered distance-
constrained embedded subtrees. 

Tree Representation and CF Ordering. Our work utilizes the pre-order string en-
coding (φ) as described in [2,9], which is a sequential representation of the nodes of a 
tree as encountered during the pre-order traversal of that tree. The backtrack symbol 
(‘/’) is used whenever moving up a node in the tree during the pre-order traversal. To 
take the distance between the nodes into account, the encoding of a subtree is ob-
tained by reading the nodes in the pre-order traversal and for each node storing the 
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Fig. 3. General description of the steps taken in the proposed approach  

distance to the root of the subtree (node depth). The distance to the root is worked out 
from the node levels stored in the RL structure, where the root of the subtree is as-
signed the depth of 0 and all other nodes are assigned the difference between their 
level and the original level of the new subtree root. Further modification of the encod-
ing consists in storing a number next to each backtrack ‘/’ symbol indicating the 
number of backtracks in the subtree, as opposed to storing each of those backtracks as 
a separate symbol. This representation allows easier string manipulation due to uni-
form block size. We denote encoding of a subtree T as φ(T) and eg. from Fig. 1, 
φ(T):‘b0 a1 e2 /1 c2 /2 d1 /1 c1 d2 e3 /1 d3 /2 e2 /2’, φ(st1):‘b0 a1 /1 c1 d2 /1 e2 /2’, 
and φ(st2): ‘‘b0 a1 /1 c1 d3 /1 e2 /2’. The backtrack symbols can be omitted after the 
last node eg. φ(st3): ‘‘b0 a1 /1 c1 d3 /1 e3’.  

The canonical form ordering occurs at the start where the whole tree database is 
ordered into its canonical form and later where candidate subtrees are ordered so that 
unordered subtrees are correctly enumerated. The canonical form according to which 
we order the trees uses the idea of the DFCF [1] where the nodes are sorted at each 
level of the subtree in a bottom up fashion (i.e. starting from the leaf nodes), and the 
nodes with labels that sort lexicographically smaller are placed to the left of the sub-
tree.  The ordering process is determined by the means used for comparing nodes or 
subtrees so that they are placed at the right position in the tree. At the implementation 
level the process can be formally explained as: given two trees T1 and T2, with 
root[T1] = r1 and root[T2] = r2, let C(r1) and C(r2) denote the children sets of r1 and 
r2, respectively. Further, let φ(Tx)k denote the kth element of the pre-order string en-
coding of tree Tx (x = 1 or 2)(this can be either a node label or the special backtrack 
(‘/’) symbol which is considered smaller than any other label). In case the node labels 
are the same the distance information associated with each node will be considered so 
that the nodes with smaller distances to the root of the tree are placed to the left. T1 is 
considered smaller than T2 iff either: 

 



 Mining Unordered Distance-Constrained Embedded Subtrees 279 

a.) L(r1) < L(r2), or 
b.) L(r1) = L(r2) and either size(C(r1)) < size(C(r2)) and φ(T1)k = φ(T2)k for all 1 ≤ 

k ≤ length(φ(T1)), or   φ(T1)k < φ(T2)k for some 1 ≤ k < length(φ(T1)) 

This ordering scheme will ensure that all the instances of unordered distance-
constrained embedded subtrees are correctly represented and counted. 

Recursive List (RL) and F1 Construction. The tree database, Tdb, is scanned once to 
create the global sequence RL in memory, through which nodes’ related information 
can be directly accessed. Each node is stored following the pre-order traversal of the 
Tdb. Position, label, scope, and level information are stored for each node. The scope 
of a node refers to the position of its rightmost leaf node or its own position if it is a 
leaf node itself [2,9] whereas the level refers here to the level in the Tdb tree, where 
this node occurs. An item in RL at position i is referred to as RL[i]. Every time a node 
is inserted into the RL, we generate a candidate 1-subtree. Based on its label, we in-
crement its support count in the C1 hash table. If its support count is ≥ σ (user-
specified minimum support count), we insert the candidate 1-subtree to the frequent 
1-subtree set, F1. An example RL structure representing the tree T from Fig. 1 is dis-
played in Fig. 4. The pre-order position of a node in the tree database is equal to the 
index of the RL at which that nodes is stored, and the label, scope and level are shown 
in that order underneath the entry. All this information is necessary to enumerate only 
valid subtree candidates and is accessed in the TMG candidate enumeration process 
explained next. 

 

Fig. 4. Recursive List representation of tree T (Fig. 1) 

A particular subtree, as defined by its encoding can be found at many places in the 
database and these different occurrences need to be stored so that subsequent set of 
candidates can be generated. We only store the occurrence coordinates of the nodes in 
the right-most path of the subtree (referred to as RMP-oc). Within our framework, this 
information is sufficient for enumerating candidate (k+1)-subtrees from a frequent k-
subtree. Given a k-subtree T with oc [e0,e1,…ek-1], the RMP-oc of T, denoted by Ψ(T), 
is defined by [e0,e1,…,ej] such that Ψ(T) ⊆ oc(T); ej = ek-1; and j ≤ k-1 and the path 
from ej to e0 is the RMP of tree T.  Vertical Occurrence List (VOL) is used to store all 
Ψ(T) of a subtree T represented by its pre-order string encoding φ(T), and to deter-
mine the occurrence-match and transaction-based support. A transaction identifier 
(tid) is stored for each Ψ(T) so that the occurrence match of T equals to |VOL| while 
the transaction-based support equals to the number of unique tids in VOL. 

TMG Candidate Subtree Generation. TMG is a specialization of the right most 
path extension method which has been reported to be complete and non-redundant 
[2,9]. To enumerate all embedded k-subtrees from a (k-1)-subtree, the TMG enumera-
tion approach extends all the nodes in the RMP of a (k-1)-subtree, by one node at a 
time. Hence, it is a breadth-first (BF) enumeration strategy. Suppose that nodes in the 
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RMP of a subtree are defined as extension points. The TMG can be formulated as 
follows. Let Ψ(Tk-1):[e0,e1,…ej] denote the RMP-oc of a frequent (k-1)-subtree Tk-1, 
and Φ  the scope of the root node e0. TMG generates k-subtrees by extending each 
extension point n∈Ψ(Tk-1) with a node with oc t iff n < t ≤ Φ. Suppose that the encod-
ing of Tk-1 is denoted by φ(Tk-1) and l(ej,t) is a labeling function for extending exten-
sion point n (i.e. ej) with a node at position t. φ(Tk) would be defined as φ(Tk-1)+l(ej,t), 
where l(ej,t) determines the number of backtrack symbols ‘/’ to be appended before 
the label of the new node is added to  φ(Tk). The number of backtrack symbols is 
calculated as the shortest path length between the extension point n and the right-
most-node r, (notation pl(n,r)). To generate RMP at each step of candidate generation, 
we utilize the computed number of backtrack symbols b that need to be appended 
before the new node with oc t is added to the encoding. Given that the Ψ(Tk-1) is 
[e0,e1,…,ej], the RMP of the k-subtree (Ψ(Tk)) is generated by appending t at position 
(j+1) – b of the (Ψ(Tk-1)) and removing any RMP-oc that occur after t, thereby making 
t the right most node of Tk. This will make sure that at each extension of (k-1)-subtree, 
RMP-oc of k-subtree are appropriately stored. 

To provide an illustrative example let us say that we are extending the Tk-1 subtree 
from Fig. 5, withΨ(Tk-1):[0,4,5] (oc:0145) and φ(Tk-1):’a0 b1 /1 b1 c2’. The label, 
level and scope information is obtained from the RL entries corresponding to the oc of 
a node as is shown on the right of figure. For example at RL[10], we would have the 
label ‘c’, scope 10 and level 2. If extending Tk-1 from extension point node ‘b’ (oc:4) 
with node ‘e’ (oc:8) then l(5,8) will append one backtrack symbol (pl(4,5) = 1) and 
the label ‘e’ to φ(Tk-1) together with the distance to the root node obtained from RL 
(i.e. level of node ‘e’ - level of root node ‘a’, i.e. 3 – 0 = 3) . The new encoding φ(Tk) 
becomes ‘a0 b1 /1 b1 c2 /1 e3’, and Ψ(Tk):[0,4,8] (i.e. inserting 8 in entry (j+1) – b = 
(3+1) – 1 = 3 of Ψ(Tk-1)).  

 

Fig. 5. TMG enumeration: extending (k-1)-subtree Tk-1 (where φ(Tk-1):‘a b / b c’ occurs at 
position (0,1,4,5)) with nodes at positions 6, 7, 8, 9, and 10  

In the case of unordered subtrees, the right-most-node may not always correspond 
to the last node (tail position) in the encoding as it does for the ordered subtree case. 
We refer to this case as non-tail expansion. A notion of pivot position ς is used to 
denote the position in the subtree encoding that corresponds to the right-most-node. 
Each RMP-OC of a subtree will store an integer indicating the pivot position ς in the 
encoding for that particular occurrence of the subtree. Hence, for a non-tail expansion 
of a subtree Tk-1, if we are appending a new node with label l and OC t, rather than 
appending the backtrack symbols (if any) and l to the last node in φ(Tk-1), it will be 



 Mining Unordered Distance-Constrained Embedded Subtrees 281 

appended to the pivot position ς by the function l(ς, t), in order to obtain φ(Tk). Please 
note that if there are b backtrack symbols to be appended with l and there were al-
ready some backtrack symbols after the pivot position ς in φ(Tk-1), then l will be ap-
pended after the bth backtrack symbol. Furthermore, an additional backtrack symbol 
will be appended after the position in the encoding where l has been appended. To 
illustrate this please consider the subtree st3 from tree T in Fig. 1, with 
oc:01587,Ψ(st3):[0,5,8] and φ(st3):’b0 a1 /1 c1 d3 /1 e3’ As can be seen the right-
most node does not correspond to the last node ‘e’ in the encoding with oc:7, but 
rather to node ‘d’ with oc:8. Therefore, if we are extending st3 from extension point 
node ‘c’ (oc:5) with node ‘e’ (oc:9) then l(5,9) will append the label ‘e’ to φ(st3) at 
pivot position ς and add ‘/1’ after ’d’ (from pl(5,8). The new encoding becomes ’b0 
a1 /1 c1 d3 /1 e2 /1 e3’. ]. Whenever a new candidate k-subtree is generated, full (k-1) 
pruning [2,3,9] is performed where a k-subtree is pruned if at least one of its (k-1)-
subtree is infrequent. The whole process of TMG candidate enumeration is repeated 
until all frequent k-subtrees are enumerated.  

4   Experimental Results 

The experiments were run on Intel Xeon E5345 at 2.33 GHz with 8 cores, 8 GB RAM 
and 4MB Cashe Open SUSE 10.2.  The purpose of the first experiment is to test the 
scalability of the proposed u3Razor algorithm with respect to the increasing number 
of transactions present in a database. An artificial database was created, where the 
size of the transactions for each test was varied from 100,000, 500,000 to 1 million 
with minimum support 50, 250, and 500, respectively. Occurrence match support 
definition was used and the result displayed in Fig. 6, shows that the time to complete 
the task approximately scales linearly with the increase in transaction size.  
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Fig. 6. Scalability – time performance / number of transactions 

The second experiment was performed to examine compare the number of frequent 
subtrees detected between the proposed algorithm and the UNI3 [12] and U3 [13] algo-
rithms for mining of unordered induced and embedded subtrees, respectively. Real 
world CSLogs data set [9] consisting of 32421 transactions was used, and the transac-
tional support definition was used. The number of frequent subtrees detected by the 
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u3Razor and UNI3 algorithms is equal for support thresholds of 1000, 800 and 600 
(Figure 7(a)). At these supports, the U3 algorithm detects additional subtrees as fre-
quent, which implies that those additional embedded subtrees occur with a different 
distance among the nodes in the original tree. Otherwise, a number of them would have 
been detected by the u3Razor algorithm, where the distances have to be the same. It 
should be noted here that there may be some embedded subtrees that occur with the 
same distance among the nodes but the number of occurrences of such subtrees is not 
sufficient to be considered as frequent by the u3Razor algorithm for the given support. 
Since there are no embedded levels among the nodes in induced subtrees (i.e. the dis-
tance between all the nodes is equal to 1), both u3Razor and UNI3 detect the same fre-
quent subtrees in this scenario. For lower support thresholds, more subtrees will be 
considered as frequent. The difference between the number detected by u3Razor and 
UNI3 in Fig. 7(a) indicates that there are some sufficient occurrences of embedded 
subtrees where the distance among the nodes is different in the original tree. There are 4 
such embedded subtrees for s400 and 39 for s200. For some applications it may be of 
interest to the user to analyze such patterns to reveal some specific dataset characteris-
tics. If the difference in the level is caused by same information being stored differently 
then they can be considered as valid patterns, while if the difference is due to the items 
with same labels being used in different contexts then they should be considered invalid. 
They are valid with respect to the support threshold. Fig. 7(b) shows the time taken by 
the algorithms for completing this task. For most support thresholds, the u3Razor algo-
rithm takes slightly longer and this is due to the fact that the level information needs to 
be stored for all the nodes of the enumerated subtrees. At s200, the U3 algorithm takes 
the longest which is explained by the additional 54 subtrees that it considers as frequent 
in comparison with u3Razor (see Fig. 7(a)). 

 

Fig. 7. (a) Number of frequent subtrees  (b) time taken 

5   Conclusions 

In this paper we have discussed the motivation and some important applications for 
mining of unordered distance-constrained embedded subtrees. The first algorithm that 
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solves this problem was presented as the extension to our general TMG candidate 
subtree enumeration framework. A number of experiments were performed using both 
synthetic and real-world datasets. The comparison of the results with the algorithms 
mining traditional subtree types, indicate the potential for more specific data analysis 
from tree-structured documents by considering the distance between the nodes. 
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Abstract. In this paper we present a new method for finding frequent
patterns from tree-structured data, where a frequent pattern means a
subgraph which frequently occurs in a given tree-structured data. We
make use of a data compression method called TGCA for tree-structured
data. Improving manipulation of large scaled data by compressing them
has been investigated in previous studies, such as keyword search in plain
texts, and frequent itemset mining from transaction data, but it has not
been applied to finding frequent patterns from tree-structured data in the
best of our knowledge. The TGCA algorithm is obtained by modifying
the SEQUITUR algorithm for plain texts so that it can compress tree-
structured data, and we show that we can count occurrences of patterns
in the original data by using the data compressed by TGCA without
expanding it. This is the reason why our method improves the efficiency
of finding frequent patterns. The advantage of our method is shown in
some experiments in the case that the data can be compressed in some
good compression ratios.

1 Introduction

A semi-structured document is a text document which is given hierarchical struc-
tures with tags and is represented in the form of a tree. We call such a document
tree-structured data. Typical examples of tree-structured data are HTML/XML
documents. The aim of this paper is to present a new method for finding fre-
quent patterns from a tree-structured data, where a frequent pattern means a
subgraph which frequently occurs in a given tree-structured data.

Improving manipulation of large scaled data by compressing them has been
investigated in previous studies. Takeda et al.[12] achieved more efficient string
retrieval from compressed text data than from uncompressed. Han et al.[5] made
finding frequent itemsets more efficient by using a method which is similar to data
compression. However, in the best of our knowledge, improving finding patterns
with data compression from tree-structured data has not been investigated yet.

For XML documents, compression algorithms such as XMill[8], XGrind[14],
and XPress[6] have been proposed for making query processing more friendly
and so on. In this study, we use the TGCA algorithm[11] which is obtained by

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 284–295, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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modifying the SEQUITUR algorithm[9] so that it can compress tree-structured
data. TGCA enables us to count occurrences of patterns in the original data by
using the data compressed by TGCA without expanding it.

Various algorithms have been proposed for finding frequent patterns efficiently
from tree-structured data, e.g. [1][2][4][10][13][16], but each of them follows its
own formalization of the tree-structured data mining problem. We follow the
formalization for the FREQT algorithm by Asai et al.[1]. We also extend FREQT
so that it may take as its input data compressed by TGCA. We show that our
method is more efficient than the original FREQT, by complexity analysis of
algorithm. We also made some experiments with practical data to see whether
or not our method works well.

This paper is organized as follows: We introduce the definition of tree-
structured data mining problem and the compression algorithm TGCA in Sec-
tion 2. Section 3 presents our method of finding frequent patterns and its merits.
Section 4 shows our experimental results and analysis, and in Section 5 we give
our conclusion.

2 Preliminaries

2.1 Tree-Structured Data Mining Problem

According to the formalization by Asai et al.[1], we model tree-structured data
and patterns over them with rooted ordered trees.

A rooted tree T is a tuple of (V,L, v0, E,�, label), where V and L are distinct
finite sets, E ⊆ V 2, � is a partial order of elements in V , and label is a mapping
V → L. Each element of V is called a node of T , and v0 ∈ V is called its root.
Each element of E is called a directed edge. If label(v) = l, we say that the label
of the node v is l. For each v ∈ V except v0, there is a unique v′ s.t. (v′, v) ∈ E
and we call v′ the parent of v, and write v′ = π(v). We inductively define πn(v)
as π0(v) = v and πn(v) = π(πn−1(v)). We let π(v0) = λ, and π(λ) = λ where
λ stands for empty. The nodes v1, ..., vn are siblings if π(v1) = · · · = π(vn), and
we assume that v1 � v2 � · · · � vn. We write vi+1 = NextSibling(vi), and let
λ = NextSibling(vn). The leftmost child of v is denoted by Child(v). If v has
no child, then we write Child(v) = λ. The size of T , which is denoted by |T |, is
the total number of the nodes in T .

A data tree is a rooted ordered tree which intends to express a tree-structured
data. A pattern tree or simply pattern is a rooted ordered tree. A pattern tree T
occurs in a data tree D if a set {d1, ..., dn} of the nodes in D exists for the set
{t1, ..., tn} of all nodes in T , and satisfies all of the following three conditions.

1. For all 1 ≤ i ≤ n, label(ti) = label(di).
2. For all 1 ≤ i, j ≤ n, if ti = π(tj), then di = π(dj).
3. For all 1 ≤ i, j ≤ n, if tj = NextSibling(ti), then di � dj .

We call di({d1, ..., dn}) an occurrence of ti(T, resp.) in D. The set of all occur-
rences of ti in D is denoted by OccD(ti), and its length by |OccD(ti)|. The root of
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Fig. 1. Examples of a data tree and a pattern tree

T is denoted by Root(T ), and the number of occurrences of T in D is defined as
|OccD(Root(T ))|. Note that even if {d1, d2, ..., dn} and {d1, d

′
2, ..., d

′
n} where oc-

currence of T is d1 are different occurrence of T in D, we do not take into account
the duplication in counting |OccD(Root(T ))|. We define its occurrence frequency
freqD(T ) as freqD(T ) = |OccD(Root(T ))|/|D|. We fix σ s.t. 0 < σ ≤ 1 and call
it the minimum support. If freqD(T ) ≥ σ, then T is σ-frequent in D.

We show examples D of a data tree and T of a pattern in Fig.1. The occurrences
of T in D are {d1, d2, d11}, {d1, d7, d11}, {d2, d3, d4}, {d2, d3, d6}, {d2, d5, d6},
{d7, d8, d9}, and {d7, d8, d10}. Those of Root(T ) are d1, d2, and d7, and therefore
freqD(T ) = 3/11.

We define the tree-structured data mining problem as follows:

Find all pattern trees which are σ-frequent in a given data tree D for a
given minimum support σ.

2.2 Compression Algorithm TGCA for Tree-Structured Data

The TGCA algorithm is a compression algorithm for semi-structured documents
with tree grammars.

A tree grammar is a grammar generating trees. If we obtain a tree grammar
which generates exactly one given tree, then the grammar can be regarded as
a representation of the tree. TGCA generates such a grammar for the tree-
structured data representing a given semi-structured document. Each rule in
TGCA is of the form R → L Ψ /, where R is a non-terminal symbol, L ∈ L is a
terminal symbol which means starting tag, Ψ is a finite sequence of non-terminal
symbols which refer to other rules, and ‘/’ is a terminal symbol which means a
finishing tag of L.

TGCA reads a sequence of tags in a semi-structured document from start to
end, and generates a tree grammar G with a stack and a list of rules. TGCA
achieves compression by representing a subtree occurring more than twice by one
rule. Compressing a tree-structured data by TGCA is equivalent to naming each
of the subtrees. The same subtrees are represented by one rule, and no two rules
have the same non-terminal symbol in their lhs, so we can identify the subtree
with the non-terminal symbol in the lhs of the rule. We use the non-terminal in
the lhs of every rule as an identifier of the rules and subtrees.

Figure 2 illustrates the tree grammar generated by TGCA from a semi-
structured document. From the document, TGCA generates rules in the order



Finding Frequent Patterns from Compressed Tree-Structured Data 287

list

group

person

email tel telemail email email

person person person person person

group group

</person><person>

<email/>

</person>

</group><group>

<person>

<email/>

</person><person>

<tel/>

</person>

</group>

</list>

<list>

<group>

<person>

<email/>

</person><person>

<tel/>

</person>

</group><group>

<person>

<email/>

R
S
→ list  R

5
R
6
R
5

/ 

R
1
→ email  /

R
2
→ person  R

1
/

R
3
→ tel  /

R
4
→ person  R

3
/

R
5
→ group  R

2
R
4

/

R
6
→ group  R

2
R
2

/

list

group

person

email tel

person

group

R
S

R
2

R
1

R
3

R
4

R
5

R
6

d
4

d
6

d
9

d
11

d
14

d
16

d
3

d
5

d
8

d
10

d
13

d
15

d
2

d
7

d
12

d
1

Fig. 2. Example of compression by TGCA

R1, ..., R6, RS . The rule RS which is generated last is called the starting rule.
The tag sequence which represents the original tree is generated by applying
other rules to the starting rule until all non-terminals are replaced. If a non-
terminal Rj appears in the rhs of Ri, then Rj is called a child rule of Ri. A
non-terminal Rj of the child rule of Ri may appear more than twice in the rhs
of Ri. We write |(Ri, Rj)| = n if a non-terminal Rj appears in the rhs of Ri n
times. |(Ri, Rj)| = 0 means that Rj is not a child rule of Ri. The number of
rules in G is denoted by |G|, and we define the ratio of the compression from D
to G as |G|/|D|. The compression ratio of the example in Fig. 2 is 7/16.

3 Algorithms

3.1 FREQT and the Rightmost Expansion Method

The FREQT algorithm[1] is one for solving the tree-structured data mining
problem. In this subsection, we explain FREQT and the rightmost expansion
method, an efficient method for enumerating tree patterns in FREQT.

Rightmost expansion of a pattern tree T means to add a new node to T as the
rightmost child of a node on the rightmost path, where the rightmost path means
the one from the root to the rightmost node, and the rightmost node is the last
one in the preorder traversal. The rightmost node of T is denoted by rm(T ).
If a pattern T ′ is obtained by rightmost expansion of T , then we say T ′ is the
rightmost expansion of T , and if π(rm(T ′)) = πp(rm(T )) and label(rm(T ′)) = l,
then we say that T ′ is (p, l)-expansion of T .
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Fig. 3. The rightmost expansion tree for the data tree D in Fig. 1

For our convenience, we consider that each pattern of size 1 is generated by
rightmost expansion of the empty tree ⊥ whose size is 0. Then any T can be
generated by applying rightmost expansion |T | times to ⊥, and the process of
the rightmost expansion from ⊥ to T is unique because it follows the preorder
traversal of T . Therefore, the processes of generating patterns with the rightmost
expansion can be expressed as a tree which is called a rightmost expansion tree.
The rightmost expansion tree R is defined as R = (T ,⊥, E), where T = {T | T
is a pattern tree}, ⊥ is the root of R, and E ⊆ T 2 where an edge (T, T ′) ∈ E iff
T ′ is obtained by rightmost expansion of T . By using the rightmost expansion
method, we can enumerate any pattern without duplication.

In FREQT, all σ-frequent patterns are found with rightmost expansion. For
a tree pattern T and its every rightmost expansion T ′ of T , it holds that

OccD(Root(T )) ⊇ OccD(Root(T ′)) ⇒ freqD(T ) ≥ freqD(T ′) .

This means that if T ′ is σ-frequent, then T is σ-frequent. From this property, all
σ-frequent patterns can be found by applying rightmost expansion repeatedly.
The property also ensures that if we meet T which is not σ-frequent, we need
not expand it anymore.

We can easily get OccD(T ′) without scanning the whole of D if we know
OccD(T ), where T ′ is the rightmost expansion of T . Furthermore, only if we know
OccD(rm(T )) and depth of rm(T ) from Root(T ), then we can get OccD(rm(T ′))
and OccD(Root(T ′)) for any rightmost expansion T ′ of T . FREQT embraces
strategy which keeps occurrences of each pattern in a data tree as a list which is
called the rightmost occurrence list. Using the rightmost occurrence list, we can
obtain space efficiency.
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Algorithm 1. Count Rules

Input: a TGCA-compressed text G
Output: A list noslistG of the number of the occurrences of the subtrees correspond-

ing to each rule in G
1: for each Rk ∈ G do
2: |Rk| := 0 ;
3: end for
4: Rj := RS ; |RS | := 1 ;
5: while Rj �= null do
6: for each Ri s.t. a child rule of Rj do
7: |Ri| := |Ri| + |Rj | · |(Rj , Ri)| ;
8: end for
9: Rj := prev(Rj) ; // the previous rule of Rj in the generating order

10: end while
11: noslistG := [|R1|, ..., |RS |] ;
12: return noslistG ;

In Fig. 3, we show the rightmost expansion tree for the data tree D in Fig. 1
when σ = 3/11 is given. The patterns which are surrounded by a box are σ-
frequent, and FREQT finds all of them. To each pattern tree in the figure, the
value s of its support and its rightmost occurrence lists are attached.

The computational complexity of FREQT is O(k2blN), where k is the size
of the maximal frequent pattern, b is the maximum number of separation in D,
l is the number of different labels, and N is the total length of the rightmost
occurrence list of all frequent patterns.

3.2 Our Algorithm for Compressed Tree-Structured Data

We extend FREQT to apply for tree-structured data compressed by TGCA(called
TGCA data). Note that in order to find frequent patterns, we have to count the
number of occurrences of subtrees from the given TGCA data. We claim the fol-
lowing proposition.

Proposition 1. Suppose a TGCA data G is obtained from a data tree D. Let
Ri ∈ G, and |Occsub

D (Ri)| denote the number of the subtrees which correspond to
a rule Ri in D. Then it holds that

|Occsub
D (Ri)| =

∑
Rj∈G |Occsub

D (Rj)| · |(Rj , Ri)| .

This proposition means that |Occsub
D (Ri)| can be computed by all of the num-

bers of the occurrences of the subtrees which correspond to the rules taking
Ri as a child rule. Algorithm 1 shows how to count the occurrences of sub-
trees from a given TGCA data. The algorithm uses the property that the list
R1, . . . , R|G|−1, Rs is in the reverse topological order.

The method for counting numbers of occurrences of each subtree has not
been shown in [11], but it is possible to compute with considering the number
of occurrences directly from TGCA data by introducing Algorithm 1.
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Algorithm 2. FREQT for TGCA data
Input: a TGCA data G, a minimum support σ
Output: All σ-frequent patterns in the original data tree of G
1: noslistG := Count Rules(G) ;
2: RMOlistG(⊥) := [R1, ..., RS ] ;
3: RightMostExpand(RMOlistG(⊥), noslistG, ⊥, σ) ;

We can apply the rightmost expansion in FREQT[1] directly to the TGCA
data by using the number of the occurrences of the subtrees. We modify the
rightmost expansion so that it can be applied to TGCA data. Moreover, be-
cause a TGCA data is composed of a set of rules, we also modify the rightmost
occurrence list so that it keeps the rule which corresponds to the root of the
pattern and the path from it to the rightmost node. Though we can not identify
the only parent of a rule unlike a node in a tree, we can handle rules in the list
as if they are nodes in a tree by this modification. Finally, we modify how the
algorithm counts the number of the occurrences of a pattern in the data tree. Let
G be a TGCA data obtained from the data tree D, and RMOlistG(T ) be the
rightmost occurrence list of T in D in our method. RMOlistG(T ) keeps rules in
it if rm(T ) = Root(T ), and keeps paths from Root(T ) to rm(T ) otherwise. We
count freqD(T ) in our method as follows:

freqD(T ) =
(∑

Ri∈RMOlistG(T ) |Occsub
D (Ri)|

)
/ |D|

We show an example of a modified rightmost occurrence list in Fig. 4. In
our method, in the case of T2 in Fig. 4, R5 and R6 are in RMOlistG(T2),
|Occsub

D (R5)| = 2, and |Occsub
D (R6)| = 1, therefore freqD(T2) is 3/16. Because

equal subtrees are processed only once, the sum of the length of the rightmost
occurrence lists in our method is shorter than that in the original algorithm.

Our method is represented as the pair of Algorithm 2 and 3. Though the com-
putational complexity of our algorithm is O(k2blN), same as that of the original
FREQT, we expect that our algorithm reduces the sum N of the rightmost oc-
currence lists. In the example illustrated in Fig. 4, N for the original FREQT is
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Algorithm 3. RightMostExpand(RMOlistG(⊥), noslistG, T, σ)
Input: a rightmost occurrence list RMOlistG(⊥), a pattern tree T
1: L := {} ; d := 0 ;
2: while d ≤ Depth(rm(T )) do
3: for each r ∈ RMOlistG(⊥) do
4: if d = 0 then
5: s := Child(r) ;
6: else
7: s := NextSibling(πd−1(r)) ;
8: end if
9: while s �= λ do

10: T ′ := TreeExpand(T,d, label(s)) ; // (d, label(s))-expansion of T
11: L := L ∪ {T ′} ; Addlist(RMOlistG(T ′), s) ;
12: s := NextSibling(s) ;
13: end while
14: end for
15: for each T ′ ∈ L do
16: if freqD(T ′) ≥ σ then
17: output(T ′) ;
18: RightMostExpand(RMOlistG(T ′), noslistG, T ′, σ) ;
19: end if
20: end for
21: d := d + 1 ;
22: end while

11, while N for our algorithm is 7. We also expect that the better compression
ratio is, the less N is and the more reduced computing time is.

4 Experimental Results

We use a FREQT program which is coded by Kudo in C++[7]. Because the
program lacks the duplicate detection in [1], we implement it by ourselves. In
the following, we refer to the modified program as “the original FREQT”. Our
method is also based on Kudo’s program. Our experiments were on a PC with
Xeon5150x2 and 2GB memory. We prepared five XML documents from Wash-
ington University XML Data Repository1 for our experiments.

Table 1 shows the results of the computing time of the original FREQT and
our method. Our method is faster than the original FREQT for dblp.xml and
wsu.xml. On the other three XML documents, nasa.xml, swissprot.xml, and
treebank.xml, we can see that the compression ratios are worse than dblp.xml
and wsu.xml.

Our method takes three times slower than the original FREQT in the case of
processing the rightmost occurrence lists of same length. We guess that this is
because every rightmost occurrence in the list of our method has more compli-
cated data structure than those of the original FREQT.
1 http://www.cs.washington.edu/research/xmldatasets/
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Table 1. Comparison of the original method and our method

dblp.xml (σ = 1%)
4,700 rules / 3,332,130 nodes

time for TGCA compression: 12.205 sec.

original our
method method

ub = 1 11.029 sec. 0.292 sec.
p = 14 (3,332,130) (4,700)

ub = 3 26.550 sec. 3.312 sec.
p = 88 (15,757,351) (850,608)

ub = 5 52.371 sec. 11.045 sec.
p = 209 (35,601,047) (3,044,584)

ub = ∞ 173.739 sec. 68.496 sec.
p = 753 (120,890,452) (19,600,054)

swissprot.xml (σ = 1%)
58,610 rules / 2,977,031 nodes

time for TGCA compression: 12.481 sec.

original our
method method

ub = 1 10.069 sec. 1.324 sec.
p = 22 (2,977,031) (58,610)

ub = 2 13.569 sec. 7.108 sec.
p = 42 (5,709,171) (1,600,454)

ub = 3 29.094 sec. 46.763 sec.
p = 135 (18,433,014) (11,237,164)

ub = ∞ 91.594 sec. 229.034 sec.
p = 496 (68,534,369) (54,755,158)

wsu.xml (σ = 1%)
20 rules / 74,557 nodes

time for TGCA compression: 0.196 sec.

original our
method method

ub = 1 0.228 sec. 0.004 sec.
p = 19 (74,557) (20)

ub = 3 0.740 sec. 0.004 sec.
p = 134 (525,817) (135)

ub = 10 33.114 sec. 0.080 sec.
p = 7, 263 (28,500,013) (7,264)

ub = ∞ 549.274 sec. 1.780 sec.
p = 102,424 (401,911,777) (102,425)

nasa.xml (σ = 0.8%)
8,738 rules / 476,646 nodes

time for TGCA compression: 1.836 sec.

original our
method method

ub = 1 1.500 sec. 0.112 sec.
p = 20 (476,646) (8,738)

ub = 3 2.612 sec. 1.008 sec.
p = 54 (1,422,756) (239,442)

ub = 5 4.548 sec. 5.116 sec.
p = 87 (2,854,316) (1,023,665)

ub = 10 28.686 sec. 62.808 sec.
p = 424 (20,882,015) (12,258,891)

treebank.xml (σ = 1%)
471,312 rules / 2,437,666 nodes

time for TGCA compression: 14.805 sec.

original our
method method

ub = 1 8.345 sec. 3.984 sec.
p = 24 (2,437,666) (471,312)

ub = 2 11.853 sec. 9.257 sec.
p = 47 (4,748,040) (1,687,053)

ub = 3 17.253 sec. 20.077 sec.
p = 80 (7,927,094) (3,829,584)

ub = ∞ 27.766 sec. 45.279 sec.
p = 111 (13,342,182) (8,141,190)

ub means the upper bound of the size

of patterns. We find every frequent

pattern whose size is no more than n

if ub = n. If ub = ∞, then we find all

frequent patterns. p is the number of

frequent patterns found by FREQT at

its ub. Every integer with parentheses

is the sum of the length of the right-

most occurrence lists about all pro-

cessed patterns.

In the cases of nasa.xml and swissprot.xml, though TGCA compression works
better than treebank.xml, the efficiency of computing for the cases in our method
is not improved so well from that in the original method as we expected. More-
over, though both of the compression ratios of the two data are about 10 times
as good as that of treebank.xml, the difference between the efficiency of the
original method and that of our method is not so improved from treebank.xml.
However, the length of the rightmost occurrence lists for our method approaches
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gradually that of the list of the original one in all of the three data with worse
compression ratios. We conjecture that in nasa.xml and swissprot.xml only small
subtrees are duplicated in the data tree and contribute to the compression ratio.

Next, we compared computing time in various compression ratios of tree-
bank.xml. The treebank.xml data has subtrees s1, . . . , s56384 as the children of
the root node. We define “duplication degree n” as the degree of duplication
of these subtrees. These subtrees snm+1, . . . , snm+n are made from the same
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subtree as snm+1 for 0 ≤ m ≤ '56384/n(. The larger the duplication degree n
is, the better the compression ratio becomes.

We can expect that the length of the rightmost occurrence lists in our method
is saved as the compression ratio is improved, and that computing time also
becomes shorter. Figure 5 shows the graph of the result of this experiment with
minimum support σ = 1% at ub = ∞. In Fig. 5, both the vertical and the
horizontal axes are logarithm scale of time and duplication degree. The original
method takes constant time. On the other hand, in our method the computing
time becomes shorter when the duplication degree is larger.

When theminimumsupportσ is small,wehavetoconsider thenon-terminal sym-
bols which have small number of occurrences. Therefore, the effect of compression
becomes smaller in the case of smaller σ. We compare computing time of ub = ∞
for dblp.xml in varying the minimum support σ. Figure 6 shows the result of the
experiment. The vertical axis in Fig. 6 is a logarithm scale of computation time.
The difference of the computing time between our method and the original FREQT
grows when the value of σ is enlarged. Our method has advantage when σ is larger.

5 Conclusions

FREQT and TGCA were not related to each other before. In this study, we find
the method of computing with considering the number of occurrence without
expanding the TGCA data. We also extend FREQT for applying to TGCA data
input, and show the efficiency of our method at finding frequent patterns from
tree-structured data in Section 3, and in Section 4 we confirmed the advantages
of our method in the case that the data can be compressed with some good
compression ratio by experiments.

Though we proposed our method on the assumption that the data tree is an
ordered tree, TGCA can work also on unordered trees. In unordered tree model,
since we need not keep sibling relations and can shift nodes which are siblings,
better compression ratio can be expected than the case in ordered tree model.
It follows that we could expect more efficiency of finding patterns.

The research which applies compression to making discovery efficient have
not existed in data structures except for itemset databases of sparse data. By
showing the possibility of making discovery more efficient with compression in
tree-structured data in this research, the same achievements in other data struc-
tures which represent dense data can be expected.

In future work, we will give more analysis about the reason why our method is
less efficient in some cases, for making the relationship between data compression
and knowledge discovery clearer. Furthermore, we will consider applying the
method which makes discovery efficiently with compression to finding maximal
and closed frequent patterns from tree-structured data, e.g. [3][15].
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Abstract. Most graph-based semi-supervised learning methods model
the structure of a dataset as a single k-NN graph. Although graph con-
struction is an important task, many existing graph-based methods build
a graph from a dataset directly and naively. While the resulting k-NN
graph provides relatively a good representation of the dataset,it generally
produces inappropriate shortcuts on cluster boundaries. In this paper, we
propose a novel approach for modeling and combining multiple graphs
with different edge weights to avoid such undesirable behavior. Using the
combination of those graphs, we can systematically reduce the effect of
noise in conceptually similar fashion to an ensemble approach. Exper-
imental results demonstrate that our approach improves classification
accuracy on both benchmark and artificial datasets.

1 Introduction

In many classification domains, it is expensive to obtain a large amount of labeled
data. For most supervised algorithms, however, insufficient labeled data will
result in lower prediction accuracy. Meanwhile, it is often easy to collect a large
amount of data without labels. Although such unlabeled data do not indicate
their classes by definition, their distribution may reveal the implict structure
of the dataset, which could help us to solve a classification task. Thus semi-
supervised learning (SSL), which leverages both labeled and unlabeled data, has
been attracting much attention in recent years.

Among various SSL approaches, graph-based approaches has been most ex-
tensively studied[1][3][4]. These approaches represent a dataset as a graph where
nodes correspond to instances and weighted edges reflect pair-wise similarities
between instances. Although these graph-based approaches have been proven ef-
fective for many cases, it also has a drawback that their accuracy heavily depend
on an initially constructed graph. Although the value of an instance has been
suffered from noise in many cases, many methods calculate the graph from a
dataset naively and directly. Such graphs allow inaccurate structure (e.g. short-
cut nodes between clusters), and the classification error occurs due to noise in
the dataset. For example, Fig. 1 (a) presents a tiny example of dataset. The
shortcut between clusters is generated in Fig. 1 (b) if an outlier exists in the
dataset. This structure of the dataset will worsen the classification accuracy on

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 296–307, 2008.
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outlier

Cluster A

Cluster B

labeled instances

Shortcut

(a) A tiny dataset (b) A graph representation (c) Combining multiple graphs

Fig. 1. A tiny example of dataset and its graph representations

cluster boundaries, because it is difficult to predict which cluster that a neigh-
boring instance of the shortcut belongs to from that graph. Therefore, a robust
modeling approach is desirable for further accuracy improvement.

To resolve the above issue, we introduce a model containing multiple graphs.
In this paper, we assume that the combination of different graphs covers the
drawback of representations of each graph. Fig. 1 (c) illustrate the idea of our
assumption. Firstly we generate different graph structures from a dataset, and
the idea combine to eliminate the influences of noise. Fig. 1(c) shows three dif-
ferent graphs, where two graphs are not affected by the influence of the outlier
instance. By combining these graphs by majority voting, a new graph represen-
tation can eliminate the shortcut (the RHS of Fig. 1(c)). Therefore, the classifi-
cation accuracy could improve as compared with the single graph representation
(Fig. 1 (b)).

In this paper, to implement the model, we define the different graph as fol-
lows: “graphs which have the same structure and the different weights of the
edge”. This is because, it is difficult to generate graphs which consist of different
connections automatically. In fact, a dataset can be represented 2nC2 patterns
(n is the number of instances). Hence, it has been next to impossible to select
useful graphs from the vast patterns. In this paper, we emulate the model using
graphs which have different weights.

The remainder of this paper is organized as follows: Section 2 explains the
basic definition of graph-based SSL and summarizes the problem. Section 3 de-
scribes our proposed algorithm in detail. Section 4 presents the experimental
results on both benchmark and artificial datasets, followed by the discussions in
Section 5. Section 6 concludes this paper.

2 Background and Problem Setting

In recent years, graph-based SSL has drawn much attention due to its effec-
tiveness in the real-world problem. The method constructs a graph g = (V, E)
where node set V = {v1, v2, . . . , vn} represents n instances in the given dataset
D = {d1, . . . ,dn} and edge set E = {. . . , eij , . . . } represents relations between
two instances, di and dj . Most of graph-based approaches employ weighted
graphs: each edge eij has a weight wij which usually represents the
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similarity between di and dj . We define the weight matrix (i.e., adjacency ma-
trix) of g as W where each element wij is given by the Gaussian function:

wij = exp {−‖di − dj‖
2σ2

} (1)

where σ is the scaling parameter. Especially, most methods create a k nearest
neighbor graph (k-NN graph) which defined as wij = 0 iff dj is not in the k
nearest neighbors of di. The graph-based SSL approach uses W as a learning
model. In the ideal dataset, a high value is given to the weight wij if nodes vi

and vj belong to the same cluster, and low ones are given to other edges. Thus
the model can reveal the similarity of instances and the cluster.

Although many classification algorithms for the graph-based model have been
proposed, but they are not essentially different. They have the same assumption
that the graph are linked thickly in the inner cluster and sparsely in the others
(known as cluster assumption). From this assumption, they predict labels of
unlabeled nodes using the smoothness on a graph. The smoothness is given
by [4]:

ε(f) =
1
2

n∑
i=1

n∑
j=1

wij(fi − fj)2 (2)

where f is C-dimensional vector (C is the number of classes) The vector of i-th
node of g is denoted by fi, and the d-th element of fi is denoted by fid. C-
dimensional vectors represent the predicted class, so we call them label vectors.
Minimizing Eq. 2, we estimate labels of unlabeled instances.

However, the graph-based approach make misclassified if the dataset is af-
fected by noise. This is because such approaches compute a k-NN graph from a
dataset directly and naively. Therefore, their structures are possible to predict
wrong clusters. If a graph is generated as Fig. 1 (b), for example, an outlier
node is connected to a instance labeled A. This graph indicates wrong clusters
because an outlier and its neighbor nodes may be estimated as the cluster A. In
spite of this problem, the graph construction method is not enough studied [2].

3 Graph Modeling Approach Using Backoff Process

In this paper, we propose a graph model which consists of multiple different
graphs to deal the above problem. This idea is inspired from ensemble approaches
[8] which can reduce the noise effect. Thus, we consider the idea as the ensemble
of multiple graph structure and assume this model can cover drawbacks of a
single k-NN graph.

To implement the idea, we define the different graph as graphs which has
the same structure and the different weight of edges (e.g. Fig .2 (right)). This
is because the selection of graph is difficult from computational cost and the
structure of a k-NN graph is useful [1] except in the boundary between clusters.
Therefore, in this paper, we emulate the basic idea using different weights. For
generate different weights, we apply random values to the weight of edges. To
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Dataset D =⎛⎝1 : 0.2, 0.3, . . .
2 : 0.4, 0.2, . . .
3 : 0.3, 0.3, . . .

⎞⎠
Weight matrix Ŵ =⎡⎣ 0 0.5 + 0.5p(e21) 0.4 + 0.4p(e31)
0.5 + 0.5p(e12) 0 0.6 + 0.6p(e32)
0.4 + 0.4p(e13) 0.6 + 0.6p(e23) 0

⎤⎦

G1

0.4

0.5

0.7
0.9

0.6
0.7

G2

0.8

0.6

0.9
0.9

0.5
0.5

G3

0.8

0.5

0.8
0.8

0.7
0.8

G4

0.5

0.7

0.9
0.7

0.5
0.6

Fig. 2. A simple example of the proposed model: the graph with the backoff process
can represent many different graphs

attend the problems of isolated nodes (any nodes must have at least one path to
labeled nodes for classification), we focus on the backoff process [5]. The backoff
process was introduced by Fagin et al. in Markov chain study. They propose the
novel Markov chain model which has the probabilistic backward transition. The
model of the backoff process adds backward transition and permits to return from
current state to previous state probabilistically. Applying the backoff process, we
obtain the graph whose nodes have at least one path to labeled nodes. Thus, we
introduce the ensemble of graphs for reducing effects of noise. In this section, we
explain the graph model with the backoff process and a classification algorithm
in detail.

3.1 A Model for the Multiple Graphs

In this subsection, we propose a procedure for constructing a graph which in-
cludes multiple graphs. The proposed method creates a directed k-NN graph,
then we apply the idea of backoff process to the initial graph.

Firstly, we construct a complete graph gfull = (V, E). Next, we construct a
k-NN graph from this graph. In this study, we assume that the graph does not
have any loop edges nor multi-edges [6], thus set wii = 0. After the construction
of the k-NN graph, we normalize the rows of the matrix as

∑
j wij = 1 because

the sum of the transition probability must be 1. Note that g is a directed graph
and thus generally wij �= wji.

Secondly, we add the probabilistic backward weight to W and update W to
Ŵ. The probabilistic backward weight is inspired from the idea of the backoff
process, and we define the weight as wji +p(eij)wij on each eji. p(eij) is defined
by the [0, 1]-uniform random value1. Thus we update the edge weight wji to ŵji:

ŵji = wji + p(eij)wij . (3)

Considering the above equation, weights are determined when the probabilis-
tic term p(eij) is fixed. Therefore, we can generate two or more graphs that

1 In our preliminary-experiment, the uniform distribution showed more robust perfor-
mance than Gaussian or Bernoulli distribution.
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t = 1 ... t = T
t

......

G1 Gt GT

Fig. 3. An example of the procedure of the proposed label propagation: Our method
use different weights by sampling from the model Ŵ for the label propagation on each
step t. It can be viewed as the combination of multiple graphs.

have different weights by other p(eij) values. For example, Fig. 2 presents the
proposed model. An example of the basic weight matrix Ŵ is shown in Fig. 2
(left). Accordingly, we can generate different weights from Ŵ because p(eij) is
a random value. In the figure (right), for example, there is four graphs (G1, G2,
G3, G4) that have the same structure and different weights. Hence, we obtain a
model which includes multiple graphs.

3.2 Label Propagation on the Graph with Backoff Process

We also propose the classification method for the proposed model. In this paper,
we propose an iterative algorithm that propagates the label information for all
unlabeled nodes. Note that we define the propagation from vi to vj as the product
of the label vector and its edge’s weight wijfi. In this subsection, the proposed
classification algorithm and its intuitive explanation are stated.

Firstly, we initialize the label vector of labeled nodes vl:

fld =

{
1 iff d = c (c represents the class index of vl)
0 otherwise,

(4)

Furthermore, the vectors of unlabeled nodes are set to the zero vector.
After the initialization, we start the iterative procedure to predict the label

vector of unlabeled nodes. The algorithm is divided into two steps. Firstly, we
calculate the propagation value from connected nodes of vi as the sum of the
propagation ŵjifj . Note that we introduce the probability function p(eij), then
(wji +wijp(eij)) represents the weight ŵji. Secondly, we update the label vector
fi by the sum of the propagation. In this step, we propagate the label information
(propagation values) and update the label vectors. Note that we do not change
the label vectors of labeled nodes because they have true information. Therefore,
we update the label vector f t

i to f t+1
i :

f t+1
i = α

∑
j

(wijp
t(eij) + wji)f t

j , (5)
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where α (0 ≤ α ≤ 1) tunes the propagation speed (in this paper we set α =
0.5). Iterating the above procedure until t = T (1 ≤ t ≤ T ) on each node,
we determine the label vectors of unlabeled data. Finally, we output the most
accurate class index m of vi as the estimated class label of the unlabeled data
di. That m is calculated by

arg max
m

fT
im. (6)

This algorithm can be interpreted as the combination of graphs that contain
different weights, because the random value pt(eij) is changed in each iteration
t independently. Intuitively, Fig. 3 shows the aspect of our algorithm. In our
method, we probabilistically and independently determine weights of edges at
each iteration (T times), and we propagate and update the label vectors on each
nodes simultaneously. Thus, as shown in Fig. 3, There are different propagation
values at each iteration step. Therefore, our method can be viewed as the algo-
rithm that uses T graphs. Using this classification method, the drawback of a
single graph is removed and the robustness for noise can be improved.

4 Experiments

To investigate the effectiveness of the proposed method, we perform several
experiments on various datasets. Next, the effectiveness of the backoff process is
examined using synthetic and real datasets.

The proposed algorithm is implemented by C++, and the random value p(eij)
is generated by mt19937 from the Boost C++ Libraries2. In all experiments, we
do not set the number of iteration T . Instead of T , we stop the iteration when
fi (in Eq. 5) is changed less than 10−6. Other parameters are set as follows:
α = 0.5, σ = 1.0 and k = 5. All experiments are performed 20 trials by randomly
sampling labeled instances. The classification accuracy is defined as the average
of all trials, and its significance is computed by the 5% t-test.

4.1 Evaluation of the Robustness to Noise on Artificial Dataset

In this subsection, we chose a simple experimental setup in order to check
whether the proposed method is robust at noisy data. This experiment use the
artificial dataset. Initial (no-noise) state of the artificial data (see Fig. 4(a)) in-
cludes 100 positive instances sampled from Gaussian distribution N((1,−1), 0.5)
and 100 negative instances from N((−1, 1), 0.5) respectively3. Then we add 60
noise instances (sampled from the same mean and different deviation, σ = 2.0)
to the above dataset (see Fig. 4(b)). We perform the label propagation with
and without the backoff process on the above noisy-dataset and set the num-
ber of randomly labeled instances is {5, 10, 15, 20}. The results are presented in
Fig. 4 (c).

From Fig. 4 (c), the result shows that the algorithm with the backoff process
is more robust for noise. This dataset is affected by noise and a simple k-NN
2 http://www.boost.org/
3 The initial state of the artificial dataset is classified perfectly.
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(a) (b) (c)

Fig. 4. (a): The initial dataset (b): the dataset including 30% of noise (c): the results
on the dataset including 30% of noise. Note that ◦ and × denote the positive and
negative labels, respectively.

graph has many edges in the boundary of clusters. Therefore, the classification
accuracy is lower than the result on the initial dataset. However, the proposed
algorithm with the backoff process reduced the classification error than one with-
out the backoff process. This result indicate that the proposed algorithm have
the potential to avoids the noise effect. Hence, the proposed method restrains
the harmful influence of outliers in the dataset.

4.2 Comparison with Existing Methods

In order to verify the performance of the proposed method, we have experi-
ments using benchmark classification datasets provided by UCI Machine Learn-
ing Repository.

In the experiment, the proposed method is compared with the following conven-
tional methods: SGT [3], Harmonic [4], TSVM [7], SVM4 and k-Nearest Neighbor
(k-NN). SGT and Harmonic use graph structures, SGT is a kind of transductive
k-NN using the graph spectral and Harmonic uses Gaussian fields over the con-
tinuous state space. TSVM is a transductive version of SVM and does not use a
graph representation. In this experiment, Harmonic use 50-NN graph and k-NN
set k = 5. SVM and k-NN are trained by using only labeled data. Unlabeled data
are treated as test data. Because SGT and TSVM are binary classifiers, we show
their experimental results for only binary datasets. The mean accuracy and its
standard deviation on 10, 30 and 50 labels are presented in Table 1, and bold dig-
its indicate the best results (include non-significant results).

From Table 1, the proposed method obtain the best results on some settings.
Especially, our method basically performs best classification accuracy at the set-
ting of 10 labels. Moreover, other graph-based approaches (Harmonic and SGT)
are sensitive to the datasets. This is because we set the parameter of graph for
all datasets and settings. Other graph-based method use a single representation
4 In this experiment, we use LIBSVM using RBF kernel, and its σ parameter is set to

the default value.
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Table 1. Results for effectiveness of proposal method on UCI datasets

Dataset Labels Harmonic SGT TSVM SVM kNN Proposal

breast
10 74.1 (±12.2) 83.8 (±5.7) 94.5 (±2.0) 92.0 (±9.6) 80.2 (±16.8) 90.6 (±5.3)
30 76.7 (±11.7) 85.9 (±2.3) 95.2 (±2.1) 96.2 (±0.6) 94.6 (±1.4) 92.8 (±2.1)
50 76.1 (±10.6) 86.5 (±1.9) 94.8 (±1.5) 96.3 (±0.5) 95.7 (±0.7) 94.6 (±1.2)

bupa
10 59.2 (±0.4) 56.9 (±4.4) 57.1 (±6.4) 53.7 (±6.0) 55.1 (±4.8) 57.9 (±4.1)
30 61.7 (±1.8) 59.7 (±4.4) 60.8(±4.7) 55.0 (±5.1) 59.1 (±2.9) 60.6 (±3.1)
50 64.2 (±1.2) 61.8 (±3.8) 62.3 (±4.0) 55.5 (±5.4) 62.2 (±3.8) 63.9 (±2.6)

ionosphere
10 65.1 (±0.4) 74.9 (±5.8) 74.4 (±7.6) 64.1 (±11.8) 65.2 (±6.7) 72.7 (±8.3)
30 67.2 (±1.0) 81.4 (±4.6) 79.7 (±5.3) 78.0 (±6.3) 73.9 (±5.3) 76.6 (±4.7)
50 69.4 (±0.8) 84.4 (±2.7) 84.5(±1.8) 82.4 (±3.9) 78.2 (±6.3) 80.6 (±2.0)

pima
10 65.6(±1.9) 56.8 (±4.3) 62.3 (±7.3) 66.2 (±3.7) 64.1 (±6.4) 63.2 (±4.9)
30 66.7 (±9.6) 61.1 (±2.6) 67.4 (±4.3) 69.2 (±3.5) 70.0 (±2.4) 67.1 (±2.5)
50 67.3 (±4.2) 59.2 (±3.5) 68.3 (±5.1) 69.2 (±3.0) 72.1 (±1.9) 68.7 (±2.3)

ecoli
10 62.0 (±9.1)

N/A N/A
58.6 (±10.9) 54.8 (±10.2) 67.5 (±8.6)

30 72.9 (±5.0) 67.1 (±8.1) 75.2 (±4.2) 76.0 (±7.7)
50 76.2 (±6.8) 72.4 (±6.5) 82.0 (±2.1) 81.1 (±2.2)

glass
10 18.7 (±4.5)

N/A N/A
38.5 (±6.7) 38.4 (±7.1) 46.4 (±8.1)

30 31.2 (±9.8) 44.0 (±6.5) 60.0 (±5.4) 62.1 (±4.4)
50 46.8 (±1.4) 47.6 (±5.1) 68.5 (±2.7) 70.0 (±3.8)

iris
10 76.2 (±11.7)

N/A N/A
73.5 (±10.2) 71.1 (±12.5) 91.1 (±1.8)

30 92.3 (±1.4) 88.8 (±10.4) 93.7(±2.9) 93.7 (±2.0)
50 93.5 (±1.8) 94.8 (±2.4) 96.4 (±1.5) 95.3 (±1.0)

wine
10 69.4 (±14.9)

N/A N/A
73.2 (±14.2) 65.6 (±11.3) 84.4 (±5.8)

30 91.4 (±5.0) 94.4 (±4.4) 95.4 (±2.0) 92.7 (±1.6)
50 95.6 (±2.1) 97.2 (±1.3) 96.1 (±1.5) 93.8 (±2.1)

of the graph, then they get worse results if a constructed graph is unfitted for the
setting. Meanwhile, our method shows stable results because of the ensemble of
multiple graphs. Consequently, the proposed method achieves high performance
and stability than conventional methods.

4.3 Comparing the Effectiveness on Benchmark Dataset

From the above experiment, the proposed method achieves the better result. To
examine whether the improvement of the performance is caused by the backoff
process, we present the comparison of the graph with backoff process (backoff )
and the graph without the backoff process (non-backoff ). Table 2 shows the
experimental result of 10, 30 and 50 labels settings on UCI dataset, and the
statistically better results are represented in bold.

Table 2 shows that the backoff achieve better or equivalent accuracy than the
non-backoff in many settings. Moreover, the standard deviation of the backoff
is smaller than the non-backoff in many datasets. This is because the proposed
method generates many graphs and its combination reduces the bias of noise.
Thus such a combination also reduces the variance of a learning model (graph),
then the results of standard deviation have been increased. Accordingly, the
backoff process is effective to the real-world dataset and can reduce the variance
of classification results.

4.4 Parameter Stability

In this subsection, we discuss the stability of the scaling parameter σ and k. Ac-
cording to [10], both experiments are performed by using the USPS
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Table 2. Results for effectiveness of the backoff process on UCI datasets

Dataset Labels non-backoff backoff

breast
10 94.1 (±2.7) 92.1 (±5.3)
30 94.2 (±2.2) 94.0 (±2.1)
50 95.4 (±1.0) 95.0 (±1.2)

bupa
10 55.2 (±4.4) 57.9 (±4.1)
30 59.6 (±3.6) 60.2 (±3.1)
50 63.5 (±2.4) 64.7 (±2.6)

ionosphere
10 67.1 (±8.7) 73.3 (±8.3)
30 73.3 (±6.5) 80.0 (±4.7)
50 83.7 (±1.9) 83.4 (±1.9)

pima
10 63.7 (±5.1) 63.4 (±4.9)
30 68.1 (±3.1) 67.2 (±2.5)
50 69.9 (±2.3) 69.5 (±2.3)

Dataset Labels non-backoff backoff

ecoli
10 66.4 (±9.1) 68.4 (±8.5)
30 76.9 (±4.3) 75.6 (±7.7)
50 79.7 (±2.9) 82.0 (±2.2)

glass
10 44.0 (±7.8) 44.3 (±8.1)
30 53.5 (±4.3) 57.0 (±4.4)
50 61.8 (±2.8) 63.0 (±3.9)

iris
10 89.0 (±8.3) 93.2 (±1.8)
30 95.0 (±1.7) 94.7 (±2.0)
50 96.2 (±1.5) 96.3 (±1.0)

wine
10 87.8 (±7.0) 88.4 (±5.7)
30 93.7 (±2.3) 93.7 (±1.6)
50 95.9 (±1.3) 94.4 (±2.0)

Fig. 5. Parameter stability of σ Fig. 6. Parameter stability of k-NN

handwritten digits dataset 5,6. The experimental settings are equal to the pre-
vious experiment. The parameters are set to:

σ; {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5},
k; {3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

The mean of classification accuracy over 50 trials using different σ and k are
presented in Fig. 5 and Fig. 6 respectively.

These figures show the difference of the accuracy between the best and the
worst results is less than about 4 points. This result means that the proposed
method has a potential of stability for both parameters. Moreover, it is appeared
that k is more sensitive than σ. This result suggests the that the connection of
nodes is more important than the measure of edge’s weight. This is because the
proposed method changes the weight of edges, but it does not change k-value.

5 http://www.kernel-machines.org/data/
6 According to [10], we reconstruct the dataset by the characters ’1’, ’2’, ’3’, ’4’.
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5 Discussion

We presented several experiments and show the effectiveness of the proposed
method in the above section. In this section, we discuss the relationship between
the proposed method and other machine learning paradigms; ensemble approach,
graph smoothing method, stochastic resonance and random matrix theory. The
ensemble approach improves the performance by creating and combining multi-
ple learners. Graph smoothing method is proposed as the pre-processing method
for graph construction. Stochastic resonance is a phenomenon that amplifies the
weak information by the assistance of noise. Random matrix theory is a math-
ematic scheme which has elements sampled from the probability distribution.
In the following, we discuss the relationships between the proposed method and
the other approach.

Relation to Ensemble Approach: Ensemble approach is the most famous meta-
learning paradigm in the machine learning domain. It creates multiple classifiers
(called weak learners) which are specialized to solve a part of the learning prob-
lem. Then it makes the highly accurate learner by combining the weak leaners.
This approach is successful in many cases and has been proven to be effective.

As suggested in Section 3.2, the proposed method is interpreted as the combi-
nation of graphs. That is to say, the proposed method is an ensemble approach.
Especially, the proposed method is similar to bagging [8]. Bagging is a random
sampling method for generating a combination of classifiers, and the random-
ness of its algorithm avoids local-minimum solution [9]. Because the proposed
method propagates the labels on many graphs which are generated randomly,
the proposed algorithm is a kind of bagging. Bagging can reduce the variance
of a model and the generalization error. Therefore, the accuracy improvement
of the proposed method can be interpreted as the reduction of the variance of
graph construction.

Relation to Graph Smoothing methods: Another paradigm is the graph smooth-
ing which has been proposed in recent years [10][11][12]. This algorithm modifies
the weights or edges of an initial graph, in the same way as our algorithm. Es-
pecially, [11] gave interesting idea to us. They assume that the higher frequency
spectral of the distribution are more likely to noise, and they use the power of
weight matrix Wm for reducing high frequency spectral. This aspect is similar
to our method, thus the improvement of our method can be interpreted as a kind
of graph smoothing. However, it can only use the modification for prepossessing
the classification task. The novelty of the proposed method is the graph (model)
including the randomness, and weights of edges are changed in each propagation
step.

Relation to Stochastic Resonance: Stochastic Resonance is researched in neuro-
science and physics [13][14]. Stochastic Resonance is the generic model that
improves the system performance using noise. Usually noise is considered to
be worthless in the machine learning, but Stochastic Resonance improves its
performance using noise.
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If we assume the probabilistic backward weight as noise, we can consider the
proposed method as the implementation of stochastic resonance for graph-based
SSL. However, it is difficult to verify this hypothesis.

Relation to the Random Matrix Theory: Random matrix is defined as the matrix
whose elements are sampled from a probability distribution [15]. Recently, this
mathematical scheme has been used in many research areas, e.g., biology, physics
and network modeling. Furthermore, it is applicable to the machine learning
problems [16].

Meanwhile, the weight matrix of a graph with the backoff process can translate
the sum of initial weight matrix and random matrix. Because the weight matrix
Ŵt after t iterations can be divided into two matrices; Ŵt = W + UW

′
where

W is an initial graph, and U is a random matrix generated by Ut
ij (the element of

i, j) as [0, wji]-uniform random value. The distribution of eigenvalues of random
matrix U is perturbative. Affecting its perturbation to the graph spectral which
calculated from W, the proposed method may cancel the noise effects.

6 Conclusion and Future Work

In this paper, we proposed a model for the multiple graph representation us-
ing the backoff process. Furthermore, the label propagation algorithm on the
graph was introduced. We evaluated the effectiveness of our method on artificial
and benchmark datasets. The proposed method performed better or equivalent
result than other methods in some settings. Moreover, additional experiments
showed the effectiveness of the proposed method. Therefore, we conclude that
the proposed method contributes to improve the performance of graph-based
SSL.

In future, we will develop a more theoretical view of our method. The theoret-
ical aspect can be mainly divided into three-ways: the ensemble approach, the
Stochastic Resonance phenomenon and the random matrix theory. Especially
the random matrix which has elements sampled from the probability distribu-
tion is studied theoretically [15][16], and its property is similar to the proposed
method.
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Abstract. We propose a new string kernel based on variable-length-
don’t-care patterns (VLDC patterns). A VLDC pattern is an element of
(Σ∪{	})∗, where Σ is an alphabet and 	 is the variable-length-don’t-care
symbol that matches any string in Σ∗. The number of VLDC patterns
matching a given string s of length n is O(22n). We present an O(n5)
algorithm for computing the kernel value. We also propose variations of
the kernel which modify the relative weights of each pattern. We evaluate
our kernels using a support vector machine to classify spam data.

1 Introduction

Text classification techniques in machine learning have a wide range of applica-
tions such as natural language processing and bioinformatics. These techniques
are based on the similarity of words, sequences or other string units with a dictio-
nary of natural language, biological actions and periodicities. It is a challenging
task to efficiently compute these similarity measures, and the kernel method is
one of the classical approaches for evaluating string similarity.

Several string kernels have been developed for various types of data. Mismatch
kernels [1] are used for biological data such as DNA and protein sequences. This
kernel allows mismatches between sequences. Rational kernels [2,3] can separate
regular languages, using weighted transducers or rational relations.

The string subsequence kernels (SSKs) and N -gram kernels (NGKs) [4] are
popular string kernels. They are easy to compute, and can be applied to a vari-
ety of data since they do not make too many assumptions about the underlying
text structure. SSKs map strings to a feature space where each dimension cor-
responds to a subsequence of length n. The value of the dimension depends on a
subsequence gap weight and how the subsequence occurs in each string. NGKs
map strings to a feature space where each dimension corresponds to a substring
of length n, or n-gram. The value of the dimension depends on how many of
each n-gram the string contains.

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 308–318, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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These kernels, however, have limitations. That is, these kernels are not suitable
when the label of the texts depend not only on some relevant pattern (substring
or subsequence) appearing in the texts, but on the order of such relevant pat-
terns. For example, assume that labels of texts are positive if the word “aab”
appears, followed by another word “aba”. For such tests, NGKs cannot capture
the order of strings in the texts. SSKs takes into account the orders of subse-
quences, but cannot capture the order of strings, either. In the case of SSKs, dis-
similar strings may be judged similar due to the dimensions of subsequence. For
example, strings “xxxabcxxx” and “yayybyycy” are clearly different. However,
they may be judged similar because they have the same subsequence dimension
“abc”. Although the SSK resolves this issue by the gap weight, preferring that
each character of the subsequence occur closer together, it cannot handle the
order of two (near-substring) subsequences as in the first example.

In this paper, we propose a new string kernels based on variable-length-don’t-
care (VLDC ) patterns [5,6,7]. A VLDC pattern is an element of Π = (Σ∪{�})∗,
where Σ is alphabet and � is a wildcard that matches any string. In the running
example, the VLDC pattern ab � bb � ba matches abaabbaba by replacing the �’s
with aa and a, respectively. The VLDC pattern gives the best of both worlds and
more, since it contains both the set of substrings and subsequences as a subset.
Unlike NGKs and SSKs, our kernel can handle the situations where the order of
relevant strings influence the labels. Our kernel is not limited to exact matching
substrings as in NGKs, and can also handle the order of two substrings.

The number of VLDC patterns that matches a given string s of length n
is O(22n). We define several versions of kernels based on the VLDC pattern,
and propose algorithms that compute kernels, for example, for a given a pair of
strings in O(max{n4, �2�|Σ|�}) time and O(n4) space, where � is the length of
VLDC patterns and n is the maximum length of given strings. Unfortunately,
the time and space complexity of computing VLDC kernels are still quite high
to apply for large data, but our kernels can be applied for data of small size in
reasonable computation time.

We show the running times of VLDC kernel computation in a preliminary
experiment, and compare with that of SSKs, using random text data. Our main
experiment is a comparison of the performance in text classification, using spam
data. The experiment shows that VLDC kernels outperform both SSKs and
NGKs.

2 Preliminaries

2.1 VLDC Patterns

Let Σ be a finite alphabet of size σ. An element of Σ∗ is called a string. Strings
x, y and z are said to be a prefix, substring, and suffix of the string u = xyz.
The length of any string u is denoted by |u|. Let ε denote the empty string, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The i-th character of a string u is denoted by
u[i] for 1 ≤ i ≤ |u|, and the substring of u that begins at position i and ends at
position j is denoted by u[i, j] for 1 ≤ i ≤ j ≤ |u|.
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Let � denote a special symbol called a variable length don’t care (VLDC ) or
a wildcard, which matches any string in Σ∗. Let Π = (Σ ∪{�})∗. Any element p
of Π is called a variable-length-don’t-care pattern (or a VLDC pattern in short).
The length of any VLDC pattern p, denoted |p|, is the number of characters plus
the number of �’s contained in p.

Definition 1. For any string x ∈ Σ∗ and any VLDC pattern p ∈ Π, p is said
to match x iff x is obtained by replacing the �’s in p with some strings in Σ∗.
We write p � x when p matches x.

Since � matches the empty string ε, for any string x ∈ Σ∗ there are an infinite
number of VLDC patterns matching x. To limit the number of VLDC patterns
matching x, consider the subset Π ′ ⊂ Π of VLDC patterns which start and end
with � and contain no consecutive �’s. For instance, �a�b� ∈ Π ′ but �a��b� /∈ Π ′

and a � b� /∈ Π ′.

Definition 2. For any string x ∈ Σ∗, we define P (x) by

P (x) = {p ∈ Π ′ | p � x}.

For any string x of length n, the size of P (x) is O(2n−1σn). Note that P (x) still
contains all interesting VLDC patterns matching x, and contains only those.
Using the running example, �a � b� ∈ Π ′ matches a string x if and only if
�a��b� /∈ Π ′ matches x. Also, we have that �a�b� ∈ Π ′ matches x if a�b� /∈ Π ′

matches x (the opposite is not true).
For each VLDC pattern p, we consider the multiset of the “maximal run” of

characters of Σ in p, as follows.

Definition 3. For any VLDC pattern p ∈ Π ′, we define the multiset Con(p) of
strings as

Con(p) =

{
{w1, . . . , wn} if p = �w1 � · · · � wn� and wi ∈ Σ+ (1 ≤ i ≤ n),
∅ if p = �.

2.2 Support Vector Machines and Kernels

In this subsection, we review the outline of Support Vector Machines(SVMs)
and kernels. SVMs are a machine learning algorithm based on the idea of a
kernel mapping, and were introduced by Boser et al [8]. This methods learn the
hyperplane in order to separate two sets of points so as to maximize the margin
distance, using several statistic properties. One of its properties is the mapping
to high dimensional feature space, that shape the performance of SVM. So called
kernels, denoted by

K(s, t) = φ(s) · φ(t),

are used in this method. The function K(s, t) calculates the inner product
between instance s and t in a high dimensional feature space defined by a
mapping φ.
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3 VLDC Kernels

For a given string, we first define the VLDC kernel which considers the hyper-
space where each dimension represents a VLDC pattern and its value is 1 if
the pattern matches the string, and 0 otherwise. Thus, the kernel can then be
defined as the number of VLDC patterns that match both strings.

Definition 4 (VLDC Kernel). For any strings s, t ∈ Σ∗, we define the VLDC
kernel K(s, t) by

K(s, t) =
∑

p∈Π′

δ(p, s, t),

where

δ(p, s, t) =

{
1 if p ∈ P (s) ∩ P (t),
0 otherwise.

In many situations, it is more natural to prefer patterns where the occurrence of
each character is closer together, in order to better capture the characteristics
of the text. In the SSKs, this is achieved through gap weights. For the VLDC
kernel, we can achieve this by preferring longer contiguous constant parts in the
VLDC pattern, as follows:

Definition 5 (Weighted VLDC Kernel). For any strings s, t ∈ Σ∗, we de-
fine the weighted VLDC kernel K ′(s, t) by

K ′(s, t) =
∑

p∈Π′

δ′(p, s, t),

where

δ′(p, s, t) =

{∑
x∈Con(p) λ|x| if p ∈ P (s) ∩ P (t) and Con(p) �= ∅,

0 otherwise,

for some λ > 1.

For the weighted VLDC kernel, we also consider a version where the length of
the VLDC pattern is limited, keeping the calculation tractable.

Definition 6 (Length Restricted Weighted VLDC Kernel). For any
strings s, t ∈ Σ∗, we define the length restricted weighted VLDC kernel K ′′

� (s, t)
by

K ′′
� (s, t) =

∑
p∈Π′

δ′′(p, s, t, �),

where

δ′′(p, s, t, �) =

{∑
x∈Con(p) λ|x| if p ∈ P (s) ∩ P (t), Con(p) �= ∅ and |p| ≤ �,

0 otherwise,

for some λ > 1 and � ≥ 1.
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We can also restrict the number of wildcards (VLDCs) used in the pattern, as
follows.

Definition 7 (Wildcard Restricted Weighted VLDC Kernel). For any
strings s, t ∈ Σ∗, we define the wildcard restricted weighted VLDC kernel
K ′′′

r (s, t) by
K ′′′

r (s, t) =
∑

p∈Π′

δ′′′(p, s, t, r),

where

δ′′′(p, s, t, r) =

{∑
x∈Con(p) λ|x| if p ∈ P (s) ∩ P (t), 0 < |Con(p)| ≤ r + 1,

0 otherwise,

for some λ > 1 and r ≥ 1.

4 Algorithms to Compute VLDC Kernels

In this section we present our algorithms to compute string kernels based on
VLDC patterns introduced in the previous section.

We use the following data structure in our algorithms.

Definition 8 (WDAWG). The Wildcard DAWG (WDAWG) of a string x,
denoted WDAWG(x), is the smallest automaton that accepts all VLDC patterns
p ∈ Π such that p � x.

WDAWG(x) with x = abbab is shown in Fig. 1.
By definition, every VLDC pattern q ∈ P (x) is accepted by WDAWG(x).

This implies that there is always a path spelling out q from the initial state of
WDAWG(x).

Theorem 1 ([9,10]). For any string x of length n, WDAWG(x) requires O(n2)
space and can be constructed in linear time in the output size.

Using WDAWGs we obtain the following results:

Theorem 2. For any strings s and t, K(s, t) can be computed in O(n5) time
and space, where n = max{|s|, |t|}.

Proof. It follows from Theorem 1 that WDAWG(s) and WDAWG(t) can be
constructed in O(n2) time and space. Then we can easily construct a DFA which
accepts every element of P (s)∩P (t) by combining WDAWG(s) and WDAWG(t).
The size of such a DFA will be O(n4) in the worst case. Furthermore, since
K(s, t) =

∑
p∈Π δ(p, s, t) = |P (s) ∩ P (t)|, K(s, t) can be computed by a simple

linear-time depth-first traversal on the combined DFA, to count the number of
paths from the initial state to all accepting states which start and end with �
and contain no consecutive �’s. However, since the number of such paths can
be very large, that is, up to O(2nσn), treating these numbers at each state can
require up to O(n) time and space. Therefore, K(s, t) can be calculated in a
total of O(n5) time and space in the worst case. ��
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Fig. 1. WDAWG(x) with x = abbab

Theorem 3. For any strings s and t, K ′(s, t) can be computed in O(n22n) time
and O(n4) space, where n = max{|s|, |t|}.

Proof. For each VLDC pattern p ∈ P (s) ∩ P (t) with Con(p) �= ∅, we need to
compute δ′(p, s, t) =

∑
x∈Con(p) λ|x|. Hence we execute a depth-first traversal

on the DFA for all the paths from the initial state to all accepting states which
start and end with � and contain no consecutive �’s. There are O(22n) such
paths. At each state corresponding to VLDC pattern p, the value of δ′(p, s, t)
can be computed in O(n) time utilizing information of the parent state in the
traversal. Overall, the total time cost is O(n2nσn). The value of K ′(s, t) grows
up to O(22nλn) which requires O(n) bits. Thus the space requirement is bounded
by O(n4), the size of the combined DFA. ��

Due to the above theorem, computing the weighted VLDC kernel K ′(s, t) is not
feasible for large n (long strings). However, the next theorem states that the
length restricted weighted VLDC kernel K ′′

� (s, t) is computable in cases where �
is small.

Theorem 4. For any strings s, t and integer �, K ′′
� (s, t) can be computed in

O(max{n4, �2�σ�}) time and O(n4) space, where n = max{|s|, |t|}.

Proof. Since we have only to consider the VLDC patterns of length at most �, the
total number of paths we traverse in the DFA is O(2�σ�). At each state p we need
O(�) time to compute δ′′(p, s, t, �). Hence the time cost is O(max{n4, �2�σ�}).
The space requirement is O(n4) since � ≤ n. ��

The wildcard restricted VLDC kernel K ′′′
r (s, t) is also computable when r is

small, since:
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Theorem 5. For any strings s, t and integer r, K ′′′
r (s, t) can be computed in

O(nr+1r) time and O(n4) space, where n = max{|s|, |t|}.
Proof. The number of VLDC patterns which have at most r wildcard symbols
� and match both s and t is

O(
r∑

i=2

×n−1Ci−2 × n2(i− 1)) = O(nrr).

Since at each state p we need O(n) time to compute δ′′′(p, s, t, r), the total time
cost is O(nr+1r). The space requirement is O(n4) since r ≤ n. ��

5 Computational Experiments

In this section, we compare our VLDC kernels with SSK and NGK by experi-
ments.

5.1 Time Comparison

Firstly, we show our experiments for comparison of computational times with
randomly generated strings. The parameters of random strings are the alphabet
size such as 4, 25 and 52 and string length such as 100, 200, · · · , 500. We
compare the length restricted VLDC kernel K ′′ with SSK. The lengths of the
VLDC patterns for K ′′ and the subsequence for SSK are set to 5, 10 and 15. We
utilized the SSK algorithm of [4]. We used a CentOS Linux desktop computer
with two 3GHz dual core Xeon processors and 16GB memory.

Table 1 shows the running times (sec) for computing the length restricted
VLDC kernel K ′′ for each VLDC pattern length. We have not computed kernel
values for the cells with “-”, since it will take too much time. Since our algorithm
traverses all possible paths in the DFA where each state has at most σ transitions,
the running time grows exponentially with respect to the alphabet size σ (see
Theorem 4). Table 2 shows the running times (sec) for computing the SSK
for each subsequence length. The running time of the SSK algorithm does not
depend on the alphabet size.

5.2 Performance Comparison

We evaluated the performances of our VLDC kernels K and K ′′, compared to
other kernels SSK and NGK. The classification algorithm we used was a free
software SVMlight1.

The values of our VLDC kernels may be huge, and thus we used the normalized
value K for K, as follows:

K(s, t) =
K(s, t)√

K(s, s)K(t, t)
,

where s, t ∈ Σ∗. The normalized value K ′′ for K ′′ is defined similarly.
1 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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Table 1. Computational times (sec) of the VLDC Kernel K′′ values for random strings,
with alphabet sizes 4, 26 and 52 and string lengths 100, 200, · · · , 500. The the VLDC
pattern length parameter 
 was set to 5, 10 and 15. We did not compute the kernel
value for each cell marked with “-”, as it will apparently take too much time.

alphabet VLDC pattern string length
size length 100 200 300 400 500

5 0.1125 0.7650 1.7250 2.9150 4.7250
4 10 0.1156 0.7356 1.4467 2.7500 4.5633

15 0.3500 1.3500 1.900 3.3100 5.1300

5 0.1550 0.9525 2.1350 3.8725 6.4475
26 10 6.6400 34.2989 41.5500 49.6400 58.1067

15 7468.7900 - - - -

5 0.2175 1.445 3.5825 6.8050 11.2750
52 10 24.2500 307.26 859.6867 1530.8200 2098.3830

15 - - - - -

Table 2. Computational times (sec) of the SSK value for random strings, with alpha-
bet sizes 4, 26 and 52 and string lengths 100, 200, · · · , 500. The subsequence length
parameter in SSK was set to 5, 10 and 15.

alphabet subsequence string length
size length 100 200 300 400 500

5 0.0004 0.0040 0.0132 0.0244 0.0384
4 10 0.0012 0.0120 0.0256 0.0504 0.0736

15 0.0036 0.0184 0.0452 0.0780 0.1216

5 0.0000 0.0040 0.0116 0.0212 0.0356
26 10 0.0020 0.0108 0.0272 0.0500 0.0792

15 0.0020 0.0180 0.0404 0.0712 0.1180

5 0.0004 0.0040 0.0116 0.0228 0.0368
52 10 0.0012 0.0108 0.0264 0.0488 0.0760

15 0.0020 0.0172 0.0388 0.0720 0.1144

In our experiments, we used spam data collected from the forum of Yahoo!
Japan Finance2, which were also used in [11]. We used 4 data sets of forum ID
“4936”, “4974”, “6830”, and “8473”. The website contains a lot of spam mes-
sages, and the administrators watch over the forums and delete spam messages.
We classified the deleted messages as spam and other remaining messages as
non-spam. In order for our algorithms to run in a reasonable amount of time,
we only used messages of length at most 200 in each data set. Table 3 shows the
number of instances (messages) in each data set.

In Table 4, we show the accuracy (%) of classification with our VLDC kernels
K, K ′′, SSK and NGK. The length restricted VLDC kernel K ′′, SSK and NGK
require the following parameters; K ′′: VLDC pattern length � and weight λ,
SSK: subsequence length and gap weight, NGK: substring length.

2 http://quote.yahoo.co.jp

http://quote.yahoo.co.jp
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Table 3. The number of instances in each data set

ID spam nonspam

4296 24 48

4974 4 14

6830 28 102

8473 22 84

Table 4. The performances of VLDC kernels K, K′′, SSK and NGK. Each cell shows
the accuracy(%) by SVMlight. In the results of the length restricted VLDC kernel K′′,
“length” means the VLDC pattern length 
 and “weight” means consecutive string
weight λ > 1. In the results of SSK, “length” means subsequence length, and “weight”
means the gap weight 0 < δ < 1. In the results of NGK, “length” means substring
length, and NGK needs no string weight parameters.

data set ID
Kernel Length Weight 4296 4974 6830 8473

VLDC K 66.67 77.78 80.00 79.25

1.1 68.06 77.78 91.54 95.29
5 1.5 68.06 77.78 91.54 95.29

VLDC K′′ 2.0 76.39 72.23 93.08 96.23
1.1 66.67 72.23 89.23 93.40

10 1.5 66.67 72.23 89.23 93.40
2.0 66.67 72.23 89.23 93.40

0.1 63.89 77.78 70.77 79.25
0.3 66.67 72.23 76.93 86.79

5 0.5 66.67 72.23 83.08 89.62
0.7 69.45 72.23 67.69 86.80
0.9 69.44 66.67 62.31 67.92
0.1 66.67 50.00 79.24 51.89
0.3 50.00 72.23 74.62 78.31

SSK 10 0.5 66.67 72.23 76.92 81.14
0.7 66.67 72.23 82.31 83.97
0.9 66.67 72.23 78.46 79.25
0.1 66.67 77.78 21.54 20.75
0.3 66.67 50.00 78.46 79.25

15 0.5 66.67 72.23 76.92 79.25
0.7 65.28 72.23 83.08 79.25
0.9 66.67 77.78 82.31 79.25

5 70.84 72.23 90.00 92.46
6 70.84 72.23 90.00 89.63

NGK 7 69.45 72.23 89.23 88.68
8 69.45 72.23 90.00 87.74
9 69.45 72.23 88.46 85.85
10 69.45 72.23 86.92 84.91
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Shorter patterns tend to give good performances for all kernels except for K
which has no length parameter. The weight parameter λ of K ′′ was the best with
λ = 2.0. Observe that, for all the forums, our length restricted VLDC kernel K ′′

shows the best performance.

6 Conclusions and Future Work

In this paper we proposed four types of string kernels based on VLDC patterns.
Firstly, we introduced the VLDC kernel based on the all common VLDC pat-
terns for a given pair of strings. This kernel is computable in O(n5) time and
space, where n is the input string length. The needlessness of parameters for
pattern length or weights is a merit of this kernel. Secondly, the weighted VLDC
kernel was introduced, in which the consecutive constant characters are weighted
according to the length of the consecutiveness. This kernel requires O(n22n) time
and O(n4) space. The third kernel, the length restricted weighted VLDC kernel,
has a parameter � for the length of VLDC patterns, and thus is computable in
O(max{n4, �2�σ�}) time and O(n4) space. Lastly, we also proposed the wildcard
restricted weighted VLDC kernel where the number of �’s in each VLDC pat-
tern is restricted by a parameter r. This kernel can be computed in O(nr+1r)
time and O(n4) space. We evaluated performances of our VLDC kernels for the
computation time and text classification ability by experiments. Computing our
VLDC kernels took longer time than SSKs and NGK. VLDC kernels, however,
outperformed SSK and NGK in the classification accuracy in the spam detecting
experiments.

Our VLDC kernels are shown to have high potential to classify text data.
However, their computational complexities may be too large to apply to large
text datasets. We are currently investigating ways to lower this complexity, while
still retaining the high classification accuracy.

Rational Kernels [2,3] are known to be able to classify regular languages. We
would also like to investigate the expressiveness of our VLDC kernels in this
direction, and determine the class of languages that they can classify.
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Abstract. In this paper, we study a content-based spam detection for a
specific type of spams, called blog and bulletin board spams. We develop
an efficient unsupervised algorithm DCE that detects spam documents
from a mixture of spam and non-spam documents using an entropy-like
measure, called the document complexity. Using suffix trees, the algo-
rithm computes the document complexity for all documents in linear
time w.r.t. the total length of input documents. Experimental results
showed that our algorithm especially works well for detecting word salad
spams, which are believed to be difficult to detect automatically.

1 Introduction

Spam messages are ubiquitous in the diversified media of the Internet. Recently,
more than 90 percent of all emails have been reported as spam. As new com-
munication media, such as blogs, have appeared, new types of spam messages
adapted for these media have also arisen. For instance, more than 75 percent
of all blog entries are blog spams, called splogs [1]. Spam messages cause great
damage to our infrastructures: They wastefully consume network resources, un-
necessarily burden the server systems of target media, such as blog servers, and
degrade the accuracy of search results. According to a report, spam emails cause
damage worths 39 billion euros worldwide. It is therefore essential to develop
methods that can detect and remove spam messages automatically.

A large number of automatic spam detection methods have been developed. In
the early stages of the history of spam detection, rule-based methods were used,
such as the compilation blacklists of IP addresses. Since then, machine learning-
based methods have been used, e.g., a Bayesian method in [2]. In general, these
methods learn probabilistic distributions of features from given training exam-
ples and then judge a new coming email on whether it is spam or non-spam, say
ham, using these learned distributions. Since it is too costly to create the nec-
essary training data, unsupervised methods were proposed [3,4,5]. However, to
circumvent detection through these methods, spammers created spam messages
in more sophisticated ways, such as image spams and word salads.

Spam detection methods are categorized into two groups: non-content-based
methods and content-based ones. A method based on a blacklist is a typical
example of the former. A Bayesian method outlined in [2] is a content-based

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 319–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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method. Algorithms in [3,4] find characteristic substrings in spam messages and
so they are also content-based method. The algorithm in [5] judges some emails
as spam if the number of similar emails is larger than a given threshold value.
The algorithm in [6] estimates language models of spam and ham messages.
Hyperlinks form part of content, and algorithms in [7,8] make full use of their
link structures.

In this paper, we study efficient content-based spam detection methods that
can work with a large collection of input documents. We assume that spam
documents are generated as copies of seed documents allowing some random
operations [9] by reflecting the observation that the aim of spammers is to obtain
large rewards with little effort and hence they have to create a large number of
copies.

The main contribution of this paper is to propose an unsupervised algorithm
for spam detection. The basic idea is to measure the cost of each document d
relative to an input document collection D by an entropy-like measure L(d | θD),
called document complexity. We expect that if documents are normal (ham) then
its generation costs are sufficiently high. On the other hand, if they are spam
document generated from seed documents, then their document complexity is
quite low. The model parameter θD is computed by the suffix tree data structure,
and the document complexity is estimated by an extension of a string probability
model called MO method proposed by Jagadish et al. [12] based on the leave-
one-out suffix trees .

However, a straightforward method based on the original MO takes almost
quadratic time in the total input size N . To overcome this difficulty, by extending
MO, we develop an efficient algorithm DCE (Document Complexity Estimation)
that computes the document complexity for all documents d together with all
leave-one-out suffix trees in in linear time in N . The keys of the algorithm is full
exploitation of the suffix tree and suffix links.

We ran experiments on the real data from popular bulletin boards and syn-
thetic data. For the real data, the results of our algorithm are comparable to the
previous unsupervised algorithm in [4]. Experimental results on the synthetic
data showed that our algorithm particularly works well for those spams such as
word salad spams based on random replacement of inconsecutive regions.

The rest of this paper is organized as follows. Section 2 reviews basic notions.
Section 3 gives our spam detection algorithm DCE. Section 4 reports experimen-
tal results. Section 5 concludes this paper.

2 Preliminaries

2.1 Strings

Let N = {0, 1, 2, . . .} and let Σ be a finite alphabet . We denote by Σ∗ the set of
all finite strings over Σ. Then, the length of x is denoted by |x| = n. The empty
string is the string of length zero and denoted by ε. If s = a1 · · ·an ∈ Σ∗ (ai ∈ Σ)
is a string of length n = |s|, then for every 1 ≤ i ≤ n, the i-th letter of s is
s[i] = ai, and the substring from i to j is s[i..j] = ai · · · aj if i ≤ j and s[i..j] = ε
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Fig. 1. The suffix tree
for a string s = cacao$

Random
modificationSpam document

source SSSS

Normal document
souce DDDD

K approximated 
spam copies

s1, ..., sK

A spam seed
s0

Original collection D0 of 
normal documents

An input collection D of N
documents

normal 
documents

Fig. 2. Blog and Bulletin Board Spam-Generation Pro-
cess

otherwise. The concatenation of strings s and t is denoted by s·t or st. For a string
s, if s = xyz ∈ Σ∗ for some strings x, y, z ∈ Σ∗ then x, y, and z are called, resp.,
a prefix , a substring, and a suffix of s. For a set D = {s1, . . . , sM} ⊆ Σ∗ (M ≥ 0)
of M strings, we define |D| = M and ||D|| =

∑
s∈D |s|. We define the sets of all

substrings and all suffices of D by Sub(D) = { s[i..j] : s ∈ D, 1 ≤ i ≤ |s| } and
Suf(D) = { s[i..|s|] : s ∈ D, 1 ≤ i ≤ |s| }, resp.

2.2 Suffix Trees

Let D = {s1, . . . , sM} (M ≥ 0) be a set of M strings over Σ with total size
N = ||D||. Then, the suffix tree for D, denoted by ST (D), is a compacted trie
ST (D) = (V, E, root, suf, lab, fr) [10] for the sets of all suffices of the strings in
D as shown in Fig. 1. Formally, the suffix tree for D is a rooted tree , where V is
the vertex set, E ⊆ V 2 is the edge set, suf : V → V is a suffix link, lab : E → Σ∗

is an edge-labeling, and fr : V → N is a frequency counter. All the out-going
edges leaving from a vertex always start with mutually different letters. Each
vertex v ∈ V represents the unique substring α = [v] ∈ Sub(D), where [v] is
the concatenation of the labels on the unique path from the root to v. For every
internal vertex [cα] starting with a symbol c ∈ Σ, there always exists a suffix
link from [cα] to the unique vertex suf([cα]) = [α]. Finally, the leaves of ST (D)
represent the set Suf(D), and thus, ST (D) stores Sub(D). In Fig. 1, we show
the suffix tree for a string s = cacao$, where solid and broken lines represent
the edges and the suffix links, respectively. Numbers in vertices represent their
frequency counters. We note that $ is the end-marker which does not occur in
s[1..|s| − 1], and then ST (s) strictly has |s| leaves.

ST (D) has at most 2N − 1 vertices since the common prefix of paths can
be shared [10]. Ukkonen [10] presented an elegant algorithm that build ST (D)
in O(N) time by traversing the tree using suffix links. We augment each vertex
v = [α] with the counter fr(v) ∈ N, which keeps the frequency of α as a substring
in strings of D. We can show that fr([α]) equals the number of leaves that are
descendants of [α].
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2.3 Blog and Bulletin Board Spam-Generation Process

We focus on a specific type of spams called blog and bulletin board spams . Fig. 2
shows an outline of a spam-generating mechanism for this type of spam that we
assumed in this paper. We next assume a large collection D0 consisting of normal
documents randomly drawn from the document source D. In typical situations,
normal documents are posted by human users.

On the other hand, to generate spam documents, we first randomly draw a
document s0, called a spam seed , from the source S for spam documents. For
some appropriately chosen number K ≥ 1, we then generate K approximate
copies s1, . . . , sK of the original seed s0 by applying the following perturbations
to s0 that are common to blog spams and bulletin board: Mutation: Changing
randomly selected letters in a document. Crossover: Exchanging randomly se-
lected parts of a pair of documents. Word Salad: Replacing a set of randomly
selected words in a sentence with randomly selected words drawn from other
sentences to have a grammatically correct, meaningless sentence.

Then, we add these K generated spam documents s1, . . . , sK to the original
document set D0. Repeating this process for different spam seeds, we create a
mixture of many normal and some spam documents, called an collection of input
documents D = (d1, . . . , dn), n ≥ 0. A document d ∈ D is dirty if it is a spam
and clean if it belongs to the original collection D0.

Although we have described a hypothetical spam-generation process, we note
that our detection algorithm in Section 3 is adaptive and thus does not need
to know a priori the characteristics of probabilistic document sources D and S,
classes of modifications, or the number K of approximate copies per seed.

2.4 The Spam Detection Problem

We consider the following problem: given an input collection D of normal and
spam documents, to classify all documents into clean or dirty. Our goal is to
devise a mapping f : D → {1, 0}, called a decision function, which makes
classification, where values 1 and 0 indicates the states that d is dirty and d not,
respectively. We measure the performance of f on D by some cost functions.
Let N = |D| and let M+ (or M−) be the number of detected spam (normal)
documents, and N+ (N−,) be the total number of spam (normal) documents in
D. Then, the recall is R = M+/N+ and the precision is P = M+/(M+ + M−).
The F-score is defined by F = 2PR/(P + R).

3 The Proposed Spam Detection Method

In this section, we describe our proposed method for blog and bulletin board
spam detection, called DCE (Document Complexity Estimation).

3.1 Outline of Our Decision Method

In our framework, each document is represented as a sequence of letters over
an alphabet Σ rather than a bag-of-words . Our method is parameterized by a
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Algorithm DCE1(D):
Input: An input collection D ⊆ D of M documents, a threshold γ.
Output: A set A ⊆ D of dirty documents in D.
1: A := ∅;
2: foreach d ∈ D do
3: D′ := D\{d};
4: Build a model θ′ = θD′ ∈ Θ for D′ by minimizing L(D′ | θ′);
5: Estimate L := L(d | θ′) � 	− log Q(d | θ′)
;
6: if L/|d| ≤ γ then
7: A := A ∪ {d}; //d is detected as a spam.
8: end for
9: return A;

Fig. 3. An outline of our spam detection algorithm

given probabilistic model M for probability distribution over Σ∗. We assume a
probabilistic model M = { Q(· | θ) : θ ∈ Θ }, which is a family of probability
distributions over strings Q(· | θ) : Σ∗ → [0, 1] with parameters θ drawn from
some parameter space Θ. A parameter θ can be a description of a non-parametric
model, e.g., Markov chains, as well as a parametric model.

In Fig. 3, we show the algorithm DCE1, which is an algorithmic schema of
our method DCE. The basic idea of our method is as follows. Let D ⊆ Σ∗ be
an input collection(or a sample) of M documents . If a given document d ∈ D
is dirty then d is a copy of some spam seed s0 ∈ S that has a certain number of
copies in D. In this case, we expect that d is statistically similar to some portion
of D, and thus, the contribution of d to the whole of D will be small. Let d ∈ D
be any target document in the sample D. If we model D by some probability
distribution Q(· | θ) for some θ ∈ Θ, then we can encode D in an encoding of
the code length

L(D | θ) ) *− log Q(D | θ)+,
so that best compression can be achieved [11]. In what follows, we denote by θD

this best parameter θ for a given collection D within Θ.
On the other hand, we suppose that the sample D of M documents is obtained

from the collection D′ = D\{d} of M − 1 documents by adding the document
d. D′ can again be encoded by some θ′ = θD′ ∈ Θ in length L(D′ | θ′). Then,
the contribution of d can be measured by how much this addition of d increases
the code length of the sample D, which is bounded above by

∆L(D, d) def= L(D′ ∪ {d} | θ)− L(D′ | θ′)
= L(D | θ)− L(D′ | θ′) ≤ L(d | θ′),

where θ = θD and θ′ = θD′ . In the above equations, the inequality in the last
row follows from the following observation: A description of D can be obtained
by appending to the description for D′ of length L(D′ | θ′) an encoding for d of
length L(d | θ′) for d conditioned by D′ = D\{d}. Hence, we have an inequality
L(D | θ) ≤ L(D′ | θ′) + L(d | θ′).
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Algorithm MO:
Input: Any data structure Sub(D) for a set D ⊆ Σ∗ of input strings, frequency counter
fr : Sub(D) → N, and a string s ∈ Σ∗ of length L.
Output: an estimated probability of Q(s|θD).

(i) Let γ0 = ε be the context, fr(ε) = ||D||, θD = (Sub(D), fr), and i := 2.
(ii) While s �= ε holds, we repeat the following process: Find the unique longest sub-

string γi ∈ Sub(D) that maximizes γi−1 ⊗ γi such that γi ⊗ s �= ε. If there are
more than two substrings with the same overlap, then take the longer one. In
case that there exists no such γi, set αi = ε, βi = γi to be the initial letter of s,
P (βi | αi) = 1/||D||. Let αi = γi−1 ⊗ γi and βi = γi ⊗ s. Remove the overlap γi ⊗ s
from s. Define P (βi | αi) = fr(αβi)/fr(αi).

(iii) Set m = i. Return Q(s | θD) = P (β1)
∏m

i=2 P (βi | αi).

Fig. 4. The original MO algorithm for estimating the probability Q(s | θD) [12]

We expect that if the target document d has more copies in D then the contri-
bution ∆L(D, d) will be smaller and thus more likely to be spam. Then, ∆L(D, d)
can be estimated by the upperbound ∆L(D, d) ) L(d | θ′) ) *− logQ(d | θ′)+.
This is our decision procedure for spam detection:

f(d) =

⎧⎨⎩ 1 if *− logQ(d | θ′)+/|d| ≤ γ

0 otherwise,
(1)

where γ > 0 is a threshold parameter, which will be given in the following
section. This gives the algorithm DCE1 in Fig. 3.

3.2 Probability Estimation for Strings by MO Method

To model Q(d | θD) for a sample D, we use the MO (Maximal Overlap) method,
introduced by Jagadish et al. [12] and built on top of an index structure based
on the suffix tree [10].

The MO method estimates the probability P (x) of a long string x ∈ Σ∗ based
on a set of shorter substrings appearing in the original string in D as follows.
The conditional probability for a string α, given string β, is given by P (β | α) =
P (αβ)/P (β). Let s ∈ Σ∗ be a target string to estimate Q(s | θD). In general, for
any model Q(· | θ), we can write the probability of the string s = β1 · · ·βm (m ≥
1) where s = β1, . . . , βm ∈ Σ∗, as P (s) = P (β1)

∏m
i=1 P (βi | β1 · · ·βi−1) For

each i = 1, . . . , m, the MO method approximates the conditional probability
P (βi | βi−1 · · ·β1) by the conditional probability P (βi | αi) with the unique
longest suffix αi of β1 · · ·βi−1, called the longest context , such that αiβi appears
in D. For substrings u and v of an input string s, we define the maximal overlap,
denoted by u⊗ v, as the maximal string w ∈ Σ∗ that is both a suffix of u and a
prefix of v.

Recall that Sub(D) is the set of strings that appears as substrings in D.
In Fig. 4, we show the original MO method that computes an estimation of
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Algorithm LinearMO:
Input: a string s, the suffix tree ST (D)for a set of strings D.
Output: an estimated probability of Q(s|θD).
1: v := the root of ST (D);
2: for i := 1, . . . , 
 = |s| do
3: xi := s[i];
4: while v has no out-going edge (v, w) labeled with xi do
5: if (v = root) then Q := Q · (1/N) with N = ||D||;
6: else v := suf(v) by following the suffix link;
7: end while
8: Q := Q · fr(w)/fr(v); /* αi = str(v) and P (xi|αi) = fr(w)/fr(v) */
9: v := w by following the edge;

10: end for
11: return Q; /* estimation of Q(s|θD) */

Fig. 5. A linear time MO-score estimation algorithm

P (s) in the greedy way. For every i = 1, . . . , |s| (|s| ≥ 1), MO finds maximally
overlapping substrings γi = αiβi ∈ Sub({s}) such that γi ∈ Sub(D) and βi �= ε.
Then, we define the associated probabilities by P (βi | αi) = fr(βiαi)/fr(βi). If
there exists no such a γi then the next letter s[k] ∈ Σ has never appeared in D,
where k = |β1 · · ·βi−1|. Then in this zero-probability case, we set αi = ε, γi = βi

to be the un-seen letter s[k] ∈ Σ, and define P (βi | αi) = 1/N , where N = ||D||
is the total letter frequency. Note that s = β1 · · ·β|s|. Finally, we compute the
estimated probability by Q(s | θD) = P (β1)

∏|s|
i=2 P (βi | αi).

Jagadish et al. [12] show that MO is computable in O(�q) time for given the
suffix tree ST (D), where � = |s| and q is the depth of ST (D). That is, MO takes
O(�2) time in worst case. They also show that MO outperforms the previous
method KVI [13], which uses the non-overlapping decomposition of the input
string in estimation.

3.3 Efficient Computation of MO by a Suffix Tree

In Fig. 6, we show the outline of algorithm DCE2 that runs in O(N) to detect
all spam candidates based on DCE, where N = ||D|| is the total length of
documents. The crucial part of the original algorithm DCE1 in Fig. 3 is the
suffix tree construction phase θD\{d} at Line 4 and the MO-score estimation
phase for − logQ(d | θD\{d}) at Line 5 for each value of d ∈ D. This is a time-
comsuming process since it iteratively builds the suffix tree ST (D\{d}) M times
for all except the current document. A straightforward implementation of DCE1
requires O(MN + M�2) ) O(MN + N�) = O(MN) time, where M = |D|,
N = ||D||, and � = maxd∈D |d|.

Speed-up of MO estimatoin. Fig. 5 shows a linear-time algorithm LinearMO
for estimating Q(s|θD) using ST (D) that quickly find the longest context βi. The
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Algorithm DCE2(D):
Input: An input collection D ⊆ D, a threshold γ > 0.
Output: A set A ⊆ D of dirty documents in D.
1: Construct the suffix tree ST (D) for the whole document D;
2: A := ∅;
3: foreach d ∈ D do
4: Simulate Q := LinearMO(d, ST (D\{d})) by running copies of LinearMO

simultaneously on ST (D) and ST ({d});
5: L := − log Q;
6: if L/|d| ≤ γ then A := A ∪ {d}; /* d is detected as a spam */
7: end for
8: return A;

Fig. 6. An outline of our spam detection algorithm

algorithm quickly finds the longest context αi for each factor βi by traversing
the suffix tree using the suffix links via a technique similar to [10]. By the next
lemma, LinearMO improves computation time of Line 4 of DCE1 from O(M�2)
time to O(M�) ) O(N) time.

Lemma 1. Let Σ be an alphabet of constant size. The algorithm LinearMO in
Fig 5 correctly implements the algorithm MO in Fig 4 to estimate Q(s | θD), and
runs in O(�) time and O(N) space, where N = ||D|| is the total size of the
sample D and � = |s| is the length of the string s.

Proof. Let γi = αiβi (m ≥ 1, 1 ≤ i ≤ m) be the maximally overlapping
substrings computed in the original MO. Assume that βj = xh · · ·xi (h ≤ i)
with k = |βi|. Then, we can show that P (βi |αi) = P (xh |αi)P (xh+1 |αixh) · · ·
P (xi |αixh · · ·xi−1) since the longest context of xj in s relative to ST (D) is
αxh · · ·xj−1 for each h ≤ j ≤ i. Therefore, the correctness follows. The time
complexity is derived from arguments similar to [10]. ��
Speed-up of suffix tree construction. In the building phase at Line 3 of Al-
gorithm DCE1, a straightforward implementation takes O(MN + M�2) time
by building the suffix tree ST (D\{d}), called a leave-one-out suffix tree for
D, for each document d ∈ D. Instead of this, we simulate traversal of the
leave-one-out suffix tree ST (D\{d}) directly on ST (D) for D and ST ({d}).
A virtual leave-one-out suffix tree for D and d is a suffix tree S̃T (D \ {d}) =
(V ′, E′, root′, suf ′, lab′, fr′) defined by V ′ = {[α] : α ∈ Σ, frD(α) ≥ 1, frd(α) ≥
1 } and E′ = { ([α], [β]) ∈ V ′×V ′ : ([α], [β]) ∈ ED }. We define the frequency of
a vertex [α] by fr′([α]) = frD([α])− frd([α]).

Lemma 2. Let D ⊆ Σ∗ and d ∈ Σ∗ be any collection and a document. Suppose
that d ∈ D. Then, S̃T (D\{d}) is isomorphic to the original ST (D\{d}).

Lemma 3. Let D ⊆ Σ∗ be any sample. For any document d ∈ D of length
�, we can simulate the algorithm LinearMO in Fig 5 over the virtual suffix tree
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S̃T (D\{d}) by runnning the copies of LinearMO simultaneously over ST (D) and
ST ({d}) by the above rule. The obtained algorithm runs in O(�) time with pre-
process O(||D|| + �) for constructing ST (D) and ST ({d}).

Proof. The algorithm has a pair (vD, vd) of two pointers vD ∈ VD and vd ∈ Vd,
respectively, on vertices of ST (D) and ST ({d}). When the algorithm receives
the next letter c = s[i], it moves from a combined state (vD, vd) to (v′D, v′d)
such that v′D = [strD(vD) · c] and v′d = [strd(vd) · c] if frD(v′D) − frd(v′d) ≥ 1
hold. For the zero-probability case (at line 5), we set N := ||D|| − |d|. To see
that the moves are always well-defined, we define the pair for v by π(α) =
(sgn frD(α), sgn frd(α)) ∈ {+, 0}×{+, 0} for any vertex v = [α] (α ∈ Σ∗).
Since d ∈ D and α ∈ Sub(d) hold by assumption, Then, we can show that
(+, +) is only possible state for π(α). Hence,the result immediately follows. ��

From Lemma 1 and Lemma 3, we show the main theorem of this paper.

Theorem 1. The algorithm DCE2 in Fig 6 runs in O(N) time and O(N) space,
where N = ||D|| is the total size of D.

3.4 Determining the Threshold

Our unsupervised spam detection method DCE2 in Fig. 6 takes a decision thresh-
old γ > 0 as a learning parameter. To determine an appropriate value of γ, we
first draw the histogram of the normalized document complexity L over unla-
beled examples only, and then adaptively define γ to be the point that takes the
minimal value in an appropriate range, say, 0.0 ∼ 1.0 (bit).

To justify this selection of γ, we show in Fig. 7 the histograms of the normal-
ized document complexity L over all documents in a test collection YF (described
later). In this experiment, documents are manually classified into three classes,
the spam, the normal, and the whole document set to see the validity of the
above selection method. In the figure, we see that the distribution for spam doc-
uments (spams) is concentrated at the values L = 0.0 ∼ 0.2 (bit) per letter,
while the normal documents (hams) spread at L = 1.0 ∼ 3.5 (bit) per letter
obeys a bell-shaped distribution with the peak around 2.2 (bit). Thus, it is a
straightforward strategy to minimize classification risk by taking γ to be the
point that takes the minimal value. This justifies the choice of γ.

4 Experimental Results

4.1 Dataset

We used a test collection of forums from Yahoo Japan Finance1, collected by
Narisawa et al. [4]. The collection consists of four sections of forum data: YF4314,
YF4974, YF6830, and YF8473. All posts from each forum’s data are labeled if
they are spam. Table 1 shows the details of them. In the following experiments,
we used only the body texts of documents, including the HTML tags.
1 http://quote.yahoo.co.jp



328 T. Uemura, D. Ikeda, and H. Arimura

Fig. 7. Histogram of the document complexity of Web data

Table 1. Details of the datasetsD

Dataset # of ham # of spam Total length

YF4314 291 1424 184,775
YF4974 331 1315 211,505
YF6830 317 1613 252,324
YF8473 264 1597 239,756

4.2 Method

We implemented the proposed method DCE and the following methods.

Naive method: Let D be the input document set. Then, the Naive method
regards a document d as spam if d is a substring of another document in D.
That is, Naive is a type of copy-detection method.

Alienness measure: Narisawa et al. [4] propose a spam detection method which
uses the representatives of substring classes, which are characteristic strings ex-
tracted from the document set. There are three measures for representatives,
called Length, Size, and Maximin, and we call the methods with them the
AM Len, the AM Siz, and the AM Max, respectively. They also propose a method
for determining the threshold for their measures. Their methods then regard a
document as spam if it contains a representative such as alien, which is an outlier
of substrings in nomal documents.

4.3 Results

Exp. 1: Basic Performance. Table 2 shows the Recalls, the Precisions, and
the F-scores for all methods. As shown in the table, DCE and AM Siz achieved
high Recall, DCE and Naive achieved high Precision, and DCE achieved the high-
est F-score in all the datasets. Overall, DCE shows slightly better performance
compared to other methods.

Exp. 2: Recall and Precision. In this experiment, we did not use the methods
to determine thresholds of each method. Instead, we output all documents as
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Table 2. Performance of spam detection methods

Forum Method Recall Precision F-score

DCE 0.59 0.95 0.73
AM Len 0.62 0.72 0.67

4314 AM Siz 0.82 0.50 0.62
AM Max 0.68 0.62 0.65

Naive 0.54 0.94 0.68

DCE 0.63 0.69 0.66
AM Len 0.35 0.70 0.47

4974 AM Siz 0.63 0.69 0.66
AM Max 0.57 0.71 0.63

Naive 0.52 0.66 0.58

Forum Method Recall Precision F-score

DCE 0.68 0.67 0.67
AM Len 0.41 0.66 0.51

6830 AM Siz 0.75 0.58 0.65
AM Max 0.67 0.67 0.67

Naive 0.54 0.71 0.62

DCE 0.63 0.69 0.66
AM Len 0.53 0.72 0.61

8473 AM Siz 0.70 0.61 0.65
AM Max 0.67 0.66 0.66

Naive 0.54 0.79 0.64

spam by ascending order of its document complexity and computed Recalls and
Precisions. The graph in Fig. 8 shows the Recall and the Precision curves of the
dataset YF6830. To the left of the intersection of the Precision and the Recall
of DCE, Precision and Recall are clearly higher than for any other methods.
However, to the right of the intersection, Precision decreases faster than for the
other methods.

Exp. 3: Performance Against Noise Density. We created noise spam by
using a seed as follows: For each position 1 ≤ i ≤ |d| of d, we replaced d[i] by
d[j] with probability p, where 1 ≤ j ≤ |d| is a random number. We called the
probability the density of noise. To examine the effect of the density, we set the
number of spams to 20. Figure 9 shows Recall rates against density. Although
DCE has higher Recall than Naive, its performance is insufficient at a higher
density.

Exp. 4: Performance Against the Number of Spams. In Fig. 10, we show
the performance against the number of inserted spams. We used the density p =
0.02. According to the increase in the number of inserted spams, the performance
of DCE showed improvement. However, Naive did not improve.

Exp. 5: Detecting Word Salads. Word salad is a new type of spam that is
difficult to detect. Spammers create word salads by replacing words in a skeleton
document with some interesting keywords. In this experiment, we created word
salads and inserted them into the document set. The dataset used was YF4974.
We created the keyword set by manually selecting from the dataset and selected
a spam as the skeleton in YF8473. The keyword set consisted of 15 nouns, and
the skeleton consisted of 45 words. All nouns in the skeleton were replaced in
the creation of the word salads. We then created these word salads and insert
them into the dataset. Figure 11 shows the result. AM Siz detected about 20% of
word salads despite only a few word salads being inserted. However, the Recall
increased up to a final figure of only 30%. On the other hand, DCE detected
approximately 100% of word salads when the number of word salads inserted
was greater than 30.
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Fig. 8. Recall and Precision curve Fig. 9. Recall vs. density

Fig. 10. Recall vs. number of inserted
noise spams

Fig. 11. Recall vs. number of inserted
word salads

5 Conclusion

In this paper, we have proposed an unsupervised spam detection algorithm that
calculates document complexity. The algorithm runs in linear time w.r.t. the
total length of the input documents. We also conducted experiments using both
real and synthetic data, where the real data was collected from popular bulletin
boards and the synthetic data was generated as word salad spam documents.
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Abstract. The need for non-standard text categorisation, i.e. based on
some subtle criterion other than topics, may arise in various circum-
stances. In this study, we consider written responses to a standardised
psychometric test for determining the personality trait of human sub-
jects. A number of state-of-the-art text classifiers that have been very
successful in standard topic-based classification problems turn out to
perform poorly in this task. Here we propose a very simple probabilis-
tic approach, which is able to achieve accurate predictions, and demon-
strates this peculiar problem is still solvable by simple statistical text
representation means. We then extend this approach to include a latent
variable, in order to obtain additional explanatory information beyond
a black-box prediction.

1 Introduction

Automatictextclassificationhasbeenahighly researchedtopicover thepastdecade
andmany successfulmethods have been devised. However, in benchmark test beds,
the notion of class is most often associated with that of a topic. Vector-space rep-
resentations [10] of text collections tend to be well separable w.r.t. topics, and so
methods like linear SVM and Naive Bayes [14,1] typically obtain high accuracy.

However, there are cases when text categorisation needs to be based on some
non-standard and more subtle criteria, other than topics. For example, in this
work, we deal with responses of human subjects to a standardised psychometric
test, for determining their personality traits. All subjects take the same test, and
the data consists of their written English prose responses to the same set of ques-
tions. The topics are therefore common to all documents. Instead, in this case, the
classification criterion of interest is the personality trait of each subject. The ques-
tion is this: Is it possible to automatically predict the personality trait of human
subjects based on their written responses and a set of hand-labelled examples?

Several methods that have been highly successful on topic based text classifi-
cation turn out to perform poorly on this task. One may even worry that perhaps
a bag-of-words representation is inappropriate and perhaps a more sophisticated
representation, involving syntactic and semantic characteristics, and / or natural
language processing approaches might be required. Naturally, searching for an-
other feature representation in an infinite space of possibilities is not a practical

J.-F. Boulicaut, M.R. Berthold, and T. Horváth (Eds.): DS 2008, LNAI 5255, pp. 332–343, 2008.
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prospect. Therefore, in this work we set out to investigate whether a statistical
approach would still bear any fruit.

We devise a fairly simple probabilistic approach that works on standard bag-
of-words features, and has a natural and clear probabilistic formulation. On
some inspection, our model has some resemblance with both tf-idf and nearest-
neighbour classification, and for the latter, we have chosen to call it nearest
neighbour translation. Despite its simplicity, our method is able to deal with
peculiar non-linear separation boundaries and, based on the data set tested, it
appears to be highly suited to the non-standard text classification task under
study. We then extend this approach to include a latent variable in order to
obtain some explanatory information in addition to black-box prediction.

In the remainder of the paper, Section 2 introduces our method. Section 3
presents its latent variable modelling extension, including an iterative procedure
for parameter estimation. Section 4 presents comparative prediction results, as
well as interpretability results. Finally, Section 5 concludes the paper.

2 Probabilistic Neighbourhood Translation

Consider a training set of N text documents, together with their associated
labels. Each document will be represented as a discrete distribution over all the
terms of the dictionary. For document n, this is denoted by P (.|n). Similarly,
each term is a distribution over all the documents of the corpus. For term t, this
is denoted by P (.|t).

Using the above representation, we define the probabilistic neighbourhood of
document n by marginalising over the terms, as the following:

P (n′|n) =
∑

t∈Dictionary

P (n′|t)P (t|n) (1)

Document n′ is a neighbour of document n with probability P (n′|n). In general,
all documents are neighbours of all other documents with some (possibly zero)
probability.

Further, let us denote the label of document n by P (z|n). This is a vector
of length C, where C is the number of classes. For the training set instances,
the labels are known, so P (ztrue|n) is just a 1-of-C label encoding — i.e. P (z =
c|n) = 1 if document n belongs to class c and zero otherwise.

Now, we can write the label probability distribution of a previously unseen
document, as the following:

P (z|nnew) =
∑

n∈TrainingSet

P (z|n)P (n|nnew) (2)

=
N∑

n=1

P (z|n)
T∑

t=1

P (n|t)P (t|nnew) (3)

=
T∑

t=1

P (z|t)P (t|nnew) (4)
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where P (t|nnew) is the term distribution representation of the new document,
and all other quantities are pre-computed from the training set.

The training procedure then only requires us to prepare the probability matrix
P (n|t) by appropriately normalising the documents-by-terms matrix, and P (z|n)
are the given label assignments. Moreover, the marginalisation over training
documents can also be pre-computed, as in (4), which essentially results in each
term being assigned a label probability. Observe in addition, the obtained label
probabilities P (z|nnew) are guaranteed to be properly normalised to sum to one
w.r.t. z, without any further effort. We may threshold this label probability
to obtain a hard partitioning of the data into classes, but at the same time the
actual value of the predicted label probability tells us about the confidence of the
prediction. A probability close to 0 or 1 indicates a highly confident prediction,
whereas, in two-class problems, a value close to 0.5 predicts a low confidence of
the class prediction. Thus we have set up a non-parametric and fully probabilistic
predictor, capable of making class predictions as well as uncertainty estimates.

To make some connection with related methods, let us inspect the formula-
tions (1)-(4) and note a resemblance with the popular ’term frequency inverse
document frequency’ (tf-idf) method [10]. In (3), we have P (t|n) exactly the
term-frequencies (tf), and an analogy between the term P (n|t) and inverse doc-
ument frequencies may also be seen, since P (n|t) = #(t, n)/

∑
n #(t, n) is in-

versely proportional to the frequency of term t throughout the entire corpus.
Contrary to tf-idf however, our formulation has a very clear probabilistic foun-
dation.

Secondly, from the form (2), we can see an analogy to a nearest neighbour
model, with a neighbourhood kernel defined by (1). Because of this analogy, and
since the neighbourhood kernel is a stochastic translation matrix, and the entire
model is formulated in probability terms, we call this approach ’ probabilis-
tic nearest neighbour translation’. The probabilistic nature of our formulation
makes it fairly straightforward to incorporate extensions as appropriate and the
next section demonstrates this with the purpose of allowing us to gain, besides
prediction, some additional explanatory information from the data.

3 An Extension for Uncovering Term-Associations

Though the simple approach presented in the previous section can be readily
used to perform classification, i.e. to predict class labels for previously unseen
data, one would often prefer to be able to map text documents from the space of
words into a more conceptual space. In the present case, this conceptual space
would be necessarily other than a topical space, for it being defined by some non-
standard labelling that we try to accommodate. Technically, this would be useful
e.g. in the cases when documents happen to have no overlapping words, despite
they share content w.r.t. to the given labelling — and in addition it may provide
additional insights in terms of interpretability. To achieve this, we extend our
model by introducing a latent ’bottleneck’ variable having K different discrete
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values, k = 1, ..., K, and aim for a version of eq. (2) where the space of terms is
replaced with the space of our new latent variable:

P (z|nnew) =
N∑

n=1

P (z|n)
K∑

k=1

P (n|k)P (k|nnew) (5)

To make the connection to the actual words space, we write:

P (n|k) =
T∑

t=1

P (n|t)P (t|k); and P (k|nnew) =
T∑

t′=1

P (k|t′)P (t′|nnew) (6)

We can think of this extension as having added a probabilistic translation
of both terms and documents into the latent space. The use of a ’bottleneck’
latent variable is quite common in generative latent variable modelling of text,
especially in unsupervised learning [6,11]. Here in turn, we employ this technique
as part of our conditional model, in the supervised learning context.

Now, replacing into (5) we have:

P (z|nnew) =
N∑

n=1

P (z|n)
T∑

t=1

P (n|t)
K∑

k=1

P (t|k)
T∑

t′=1

P (k|t′)P (t′|nnew) (7)

and we may additionally also interpret the part
∑

k P (t|k)P (k|t′) as a com-
pressed (aggregated) term association probability matrix P (t|t′) — somewhat
in the spirit of [11] — which we are going to estimate.

3.1 Parameter Estimation by Maximising the Leave-One-Out Error

For the ease of the subsequent manipulations, let us introduce the following
notations for elements precomputed from the training set: U−n ∈ RC×T with
elements P (z|t) =

∑
n′ �=n P (z|n′)P (n′|t), vn ∈ RT×1 with elements P (t|n), and

yn ∈ RK×1 with elements P (ztrue|n), ∀n ∈ TrainingSet. The unknown parame-
ters will be denoted by A1 ∈ RT×K with elements P (t|k) and A2 ∈ RK×T with
elements P (k|t′) respectively. Using these notations, the r.h.s. of the model (7)
may now be written compactly as U−nnewA1A2vnnew .

Now, to estimate the parameters A1 and A2, we maximise the leave-one-out
error, using the training set. The idea of maximising the leave-one-out error was
previously proposed in [5] for a predictive k-nearest-neighbour model termed
the ’neighbourhood component analysis’. Our approach in this section may be
seen to have some analogies with that model, though an obvious difference is
that our parameters are all probabilities, which leads to different (and simpler)
estimation equations and allows straightforward interpretation in the context of
our text analysis application.
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Thus, we formulate the objective to minimise the sum of Kullback-Leibler
divergences between the given labels y and their predictions1,

{A1, A2} = argmin
A1,A2

N∑
n=1

KL(yn||U−nA1A2vn) (8)

which, up to an additive constant (i.e. the sum of entropies of yn), is equivalent
to maximising the following objective:

Obj(A1, A2) =
∑

n

yn log {U−nA1A2vn} (9)

We add Lagrange multipliers to ensure that all columns of both A1 and A2

are proper probabilities i.e. sum up to one.
After straightforward algebra, the stationary equations will have the form of

fixed point non-linear equations that can be solved iteratively. These iterative
updates are the following:

Anew
1 ∝ Aold

1 -
∑

n

UT
−n

yn

U−nAold
1 A2vn

(A2vn)T (10)

Anew
2 ∝ Aold

2 -
∑

n

(U−nA1)T yn

U−nA1A
old
2 vn

vT
n (11)

where ∝ denotes proportionality, - stands for element-wise multiplication and
the division above also operates element-wise.

The algorithm is then to alternate the above updates to convergence. Converge
to a local optimum of the objective (9) is guaranteed, for similar arguments as
in E-M algorithms.

A remaining issue is to estimate the optimal dimensionality of the latent space,
i.e. K. This may be done e.g. by cross-validation. However, in our experiments
a wide range of K yielded very similar results, therefore for the next section
we decided to use a K = 3, for best serving interpretability. The reason is,
we are then able to use p(k|n) for visualising the text corpus. In addition, we
may also use P (t|k) to inspect the latent concepts inferred, as a result of the
word associations captured, in the form of ordered lists of representative words.
Finally, since the neighbourhood kernel is now parametrised, visualising those is
also likely to be meaningful.

4 Results

4.1 The Data

The input to our two algorithms consist of responses of 669 human subjects to
a psychometric test that encompasses four standardised questions, the same for
1 The KL-divergence is a natural choice for measuring the dissimilarity between two

probability distributions. Other divergence functions may also be employed alterna-
tively.
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all subjects tested. The actual questions are not part of the data. Further, the
training data was hand-labelled by domain experts and comprised 281 dominant
and 388 submissive examples2.

For this study, we assemble the four pieces of texts produced by each subject
into a subject-specific text document, so each document will have four para-
graphs. Topically, all of these are necessarily strongly overlapping, since the
topical subject has been set and fixed through the use of the same set of four
questions within the standardised test. The aim is then to investigate the pos-
sibility of automatically deciding the ’dominant’ versus ’submissive’ personality
traits of the subjects on the basis of their written answers.

First, we perform a standard preprocessing the raw text to produce a term-
document frequency based bag-of-words representation, using the Rainbow
toolkit [8]. In this process, we kept all words that occurred more than once, and
we switched off both stemming and stop-word removal, because unlike in topic-
based discrimination, the use of these language features may well contribute to
expressing one or the other of the personality traits.

This preprocessing resulted in a dictionary size of 4030 distinct terms. We did
not attempt to correct for spelling mistakes, so misspelled versions of the same
word occasionally coexist as distinct words in the dictionary.

4.2 Illustration

As already mentioned in Sec. 2, the basic version of our method is a lazy-learner,
i.e. it does not require any effort for training. The latent variable extension
(Sec. 3) in turn, requires an iterative algorithm for parameter estimation at
the training stage. The evolution of the objective function Eq (9) through the
iterations is shown in Figure 1. As expected, we observe a monotonic increase
to convergence.

Fig. 2 further illustrates the working of the method, showing the probabilistic
label predictions for each document, in a leave-one-out experiment, in compari-
son to the true labels. The accurate matching is quite apparent.

4.3 Personality Trait Prediction Results

To measure the performance of the automated categorisation methods that we
investigate, we create 100 independent random splits of the data into 320 training
examples and 349 examples set aside for testing. We measure the classification
accuracy in terms of the percentage of correct predictions, as well as in terms of
area under the Receiver Operating Characteristic curve (AUC) [4]. The results
are presented in Table 1.

In the table, pNN refers to the approach presented in Section 2 and pNN-
aggr3 is the extension detailed in Section 3, where K = 3 was set. We see,
both variants of our method produced highly accurate predictions. The results
2 The data was anonymised and kindly provided for research purposes by Dr Marco

de Boni, Unilever Ltd.
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Fig. 1. Evolution of the objective function Eq (9) through iterations
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Fig. 2. Left: the true labels. Right: Leave-one-out predictions.

of these two methods are comparable to each other, there is a very slight (and
statistically insignificant) performance sacrificed for interpretability in the latter
method. We see the AUC values are high and even closer, which reflects the
methods’ ability to also produce good uncertainty estimates.

In turn, in the remainder of the table we see results obtained on the same
data, by some of the most successful existing text classification methods, which
all turned out to perform quite poorly on this non-standard classification task.
We found it useless to give the AUC values for these — SVM does not give prob-
abilistic predictions or uncertainty estimates, and for the other three methods
the probabilistic predictions were close to 0 or 1 in all cases. It is clear already
from the 0-1 errors that these methods are barely above a random guessing
(though the difference from random guessing was found statistically significant
in all cases).

In these comparisons, the multinomial Naive Bayes (implemented in Rainbow)
may be considered as a baseline for its simplicity, nevertheless its previous good
performance in topic-based classification has been quite remarkable (see e.g. [9]).
The Dirichlet Compound Multinomial is a fairly recent enhancement on Naive
Bayes [2], endowed with an ability to model word burstiness in the language,
which offers a more realistic word distribution than the multinomial model.
Despite its remarkable previous success, it does not excel in the non-standard
categorisation task investigated here. The linear SVM has been among the best
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Table 1. Classification results over 100 random splits into 320 subjects for training
and 349 subjects for testing (mean ± standard deviation)

Method % classification accuracy AUC

pNN 0.9822 ± 0.0120 0.9996 ± 0.0004
pNN-aggr3 0.9722 ± 0.0119 0.9977 ± 0.0015

Multinomial Naive-Bayes 0.6002 ± 0.0152
Dirichlet Compound Multinomial 0.6098 ± 0.0082

linear-SVM 0.6183 ± 0.0131
sparse (L1) Logistic Regression 0.5977 ± 0.0682

performing and most popular text classifiers [7]. It has an in-built capability of
avoiding overfitting in the presence of large numbers of relevant features (words).
However, from the results obtained, its limitation in this peculiar problem is most
apparent3 Next, we tested the possibility that perhaps the poor performance in
our task is because too many words may be irrelevant to the target. We employed
the sparse logistic regression, which again has been previously found to have a
state-of-the-art performance for text categorisation [3]. We used the efficient
implementation available in [13], which can deal with high dimensional data.
However, the results obtained in this problem have been again not much better
than random.

4.4 Discussion

It is not trivial to generalise and trace ultimate conclusions from these results,
nevertheless, we are able to answer the most concerning of the questions. Namely,
it is certainly the case, for this data set, that a statistical approach using just
word frequency information (without any more sophisticated NLP technique) is
still capable to predict the classes of interest. Thus, the automated prediction
of personality traits from psychometric tests seems feasible to a reasonably high
degree of accuracy.

As for the large difference in performance between our simple approach versus
several of the previously most successful methods, we conjecture at this point this
may be because — unlike in topic-based classification, where topic classes tend
to be well separated — here we may encounter peculiar non-linear boundaries
between the representatives of the two personality traits in the data space. Our
rather simple approach, with its kNN flavour is able to deal with this successfully.
Further investigations using other, non-linear classifiers may shed more light on
this issue. However, one advantage of our approach, besides of being extremely
simple and computationally inexpensive, is its probabilistically clear foundation.
This enables extensions in a straightforward manner, as we have already seen in
Section 3. Rather than employing a universal black-box predictor and having to

3 The result given in the table is with the C parameter optimised using an internal
leave-one-out validation. However, we have not experimented with other kernels so
far.
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search for the appropriate non-linearity to suit the problem at hand, we have a
natural way of defining similarities and optimising the leave-one-out prediction
error directly, in order to gain further explanatory information in support of a
subsequent interpretation of the results.

4.5 Interpretability

Naturally, the extended (parametrised) version of our method is computation-
ally more demanding than the basic variant. Let us inspect therefore the addi-
tional information that it provides. Figure 3 shows the visualisation of the text
collection in the coordinate basis defined by the estimated parameters P (k|n).
Contrary to any unsupervised or topic-based visualisation method, by our model
construction, the groupings are necessarily w.r.t. the particular label specifica-
tion. The colours and markers reflect the true labels for the ease of visual evalu-
ation. Indeed the two fairly distinct clouds of points have a good correspondence
to the true personality trait labels. Beyond just label predictions, such a visuali-
sation may have the benefit of revealing the more detailed topological proximity
/ similarity relationships between the subjects w.r.t. the categorisation studied,
beyond the hard partitioning into disjoint classes.

Further, we may inspect the three latent variables through their associated
lists of probable words. As discussed earlier, these are unlikely to be topical
aspects, but instead, aspects that define the imposed non-topical grouping of
the documents. In the present case, these will be correlated lists of words whose
usage characterises the two personality traits. The top end of these lists are
shown in Table 2.

To find out how these factors relate to the known classes, we look at the
probabilities P (z|k) =

∑
n P (z|n)P (n|k). In this case, we find a probability

very close to 1 for the ’submissive’ class in the case of the aspects k = 1 and
k = 2, and very close to 1 for the ’dominant’ class in the case of k = 3. So the
interpretation of the above lists of words is clear. We should note though that, in

Table 2. The ordered lists of the most probable words associated with the three
possible values of the latent variable in our model

ran 0.020; peoples 0.019; ends 0.018; excersise 0.017; discretion 0.016;
diseased 0.016; encourages 0.015; motivate 0.014; becasue 0.013;
appeal 0.012; achoice 0.012; questioning 0.012; steadied 0.011; epecially 0.011;
turns 0.011; puffing 0.011; energy 0.011; baulk 0.010; expression 0.010; ...

throats 0.030; ran 0.029; tieing 0.028; lung 0.026; speak 0.026;
encourages 0.023; ready 0.023; wanna 0.021; atmospheres 0.018; wee 0.018;
pregnant 0.018; previous 0.017; attitude 0.016; greed 0.016; circumstances 0.016;
achoice 0.015; garden 0.015; epecially 0.015; closely 0.015; ...

countries 0.146; home 0.109; easily 0.103; restrictions 0.050; burger 0.050;
hours 0.045; things 0.044; health 0.036; social 0.031; longer 0.029;
clubs 0.027; matter 0.024; unlike 0.023; arrival 0.021; media 0.019;
bombarded 0.017; boys 0.016; public 0.013; sec 0.012; ...



A Probabilistic Neighbourhood Translation Approach 341

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

1

P(k=1|n)

 

P(k=2|n)

 

P
(k

=
3
|n

)
dominant
submissive

Fig. 3. Visualisation of the text collection in the coordinate basis defined by P (k|n).
Each points represents one subject. The superimposed true labels represented by the
markers have a good correspondence with the shape of the density.

 

 

100 200 300 400 500 600

100

200

300

400

500

600

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

100 200 300 400 500 600

100

200

300

400

500

600

0

1

2

3

4

5

6

7

8

9
x 10

−3

Fig. 4. The obtained neighbourhood probabilities (kernels) p(n|n′) in pNN and the 3D
aggregated version of pNN



342 A. Kabán

general, these estimated ’conceptual aspects’ need not be exclusively tied with
one of the classes but they may be shared by all classes with a certain probability
P (z|k) that we can calculate.

Finally, to conclude the discussion on parameter interpretability, Figure 4
shows the neighbourhood kernels as obtained by our kNN and aggregated kNN
respectively, highlighting the advantage of the latter in terms of bringing out the
hidden structure from the data. Since in the aggregated version the neighbour-
hood probabilities become a function of the additional latent variable and its
associated parameters, this allows us essentially to learn the similarities implied
by the given labelling. This is most apparent from the right-hand plot, where we
clearly see the 2-class structure in the aggregated kNN neighbourhood. By con-
trary, this global structure is not readily seen in the simpler kNN neighbourhood
(left-hand plot), as this model extracts the predictive information in a ’local’, i.e.
instance-specific manner without distilling any global structural information.

5 Conclusions

We presented a novel probabilistic approach for text categorisation and text
analysis for automating the prediction of personality traits on the basis of stan-
dardised psychometric tests taken by human subjects. This is a non-topical,
non-standard text categorisation problem, which presents difficulties to a num-
ber of state of the art text classifiers. Through our approach, we demonstrated
that such a peculiar task can still be successfully automated within a simple sta-
tistical approach using a standard word frequency representation of documents.
Further work may consider more data sets of this kind to test the so far well-
performing method further. In addition, other existing or novel classifiers could
be included in the investigation to further pin down the reasons that make some
methods more suitable than others for this problem.
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Maiorana, Francesco 234
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Merényi, Erzsébet 259
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